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INTRODUCTION 

We present a quite elementary proof of the ~sorno~~~~srn and isogeny 
theorems for reductive algebraic groups over an algebraically closed field. 

e do not require a special discussion of rank 2 groups. ur method is to 
construct directly the graph of an isomorphism or an isogeny as a closed 
subgroup of the direct product by preassigning the hyperalgebra. We need 
only standard results on reductive groups as summarized in Section 8. Let k 
be an algebraically closed field of arbitrary characteristic, and let G and 6’ 
be connected reductive algebraic groups over k with maximal tori T and T’, 
respectively, We begin with the isomorphism theorem. Assume the root 
datum (for which see 16, p. 1891) of G with respect to r is isomorphic to the 
root datum of G’ with respect to T’. We are going to construct an 
isomorphism of algebraic groups G + G’ which induces the ~somor~~ism of 
root data. To avoid the notational complexity, we think G and G” have the 
same maximal torus T and assume that the root data of G and G’ with 
respect to a are the same (X,x”, @, @“). This abuse of notation makes the 
argument. simple. Let {a, ,..., a,} be a base of @. We construct some universal 
by~e~a~gebra W(A) associated with the Cartan matrix A = ((a;, CZ~))~ which 
is defined by some generators and relations similar to the c~~d~t~~~ for 
Kac-Moody Lie algebras. There is a hyperalgebra map > + hy(G x 6’) 
whose image is the hyperalgebra of some connected clos subgroup H of 
G x G’ which is normalised by A(T) = {(t, t) / i in T/, and C? = 
seen reductive with maximal torus d(T). We can prove that 
G --) G and G -+ 6;’ are isomorphisms of algebraic groups. 
graph of an isomorphism G--f G’ which is the identity on ;P: The isogeny 
theorem can be proved quite similarly. In fact we need not e the 
isomorphism theorem since it is included in the isogeny theorem. make 
the i~om~r~hism theorem precede the isogeny one because of its notarionai 
simpticity. 
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In case of semisimple groups, we can avoid use of the coroots. Since the 
coroots @” are determined by the root system (X, @), two semisimple 
algebraic groups are isomorphic if their root systems are isomorphic. We 
will use coroots and root data to deal with reductive groups according to 
[2,61. 

The main theorems of the paper are formulated in terms of linear algebraic 
groups [l, 4, 61. The viewpoint of groups schemes 13, lo], however, is 
required as a tool. A linear algebraic group is identified with the group of 
rational points at some fixed algebraically closed field of some smooth 
algebraic aftine group scheme. Our main tool, the theory of hyperalgebras of 
algebraic afftne group schemes, is summarized in Section 2. The kernel of a 
map of algebraic groups always means the group scheme kernel, but not the 
set-theoretic kernel. 

G, and G, denote the one-dimensional additive and multiplicative groups, 
respectively. 

1. SOME STANDARD RESULTS ON REDUCTIVE GROUPS 

We need know nothing about groups of semisimple rank 2 in order to 
prove the isomorphism or isogeny theorem. What we assume about reductive 
groups is very standard and relatively small as summerized in the following. 
Mostly it concerns commutator relations of root groups. The main references 
of this section are [ 1, 2,4,6]. 

Let k be an algebraically closed field. Every algebraic group is linear and 
defined over k. Let G be a reductive group, T a maximal torus of G, @ the 
set of roots of G with respect to T, and {or,..., a,} a base of @. For each 
a E @, there is a connected T-stable subgroup U, of G together with an 
isomorphism X, : G, --t U, such that lx,(u) t-’ = x,(a(t)a) for t E T, a E G,. 

1.1. THEOREM [I, p. 341; 4, p. 1661. G is generated by T and U, for 
a = * ai (i = I,..., I). 

1.2. THEOREM [l, p. 352; 4, p. 1741. Let U’ (resp. U-) be the subgroup 
generated by U, for all positive (resp. negative) roots a. The product map 
de$nes an open immersion of varieties 

U-xTxU++G. 

Preassign any order on the positive (resp. negative) roots. Then the product 
map induces isomorphisms of varieties 

n lJ, + UC, rI UC-+ u-. 
cU>O a<0 
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1.3. B”ROPOSITION [ 1, p. 332; 4, p. 203; 6, p. 207j. Let a, ,b’ E 
hi, commutes with U, if there is no root of the fo 
In particular, Uai commutes with Umaj for 1 < i f j < 1. 

Let X=X(T) be the character group of T. I a finite free abelian group 

and its dual x” is identified with Hom(G,, a). e denote by (A, a) the value 
of J. E %” at a E X. We follow [2] for the de~n~t~o~ of coroots. (The 
de~nit~o~ of [6j is a bit different but equivalent.) In what follows, we view G 
as a group functor on commutative k-algebras. 

EFINITZQN 0~ C0~00Ts [2, pp. 156%1581. For each 
is a unique bo~~omorphism a’: 6, --) T together with an inverL 
c = c(a) E k such that 

x,(r) x-,(u) =x-, .--%-- 
i i 

f 
1 + ctu 

a”(1 f ctu)x, ___ 
!, 1 1 + ctu 

in the group G(k[t, U, (1 + ctu)-‘1). The map CI~ is calied the coroot 
associated with a. Ht does not depend on the choice of (x,, x-J. The set of 
all coroots is denoted by @,“. The set (X, 14”, @, @“) satisfies the axiom of a 
root datum and called the root datum of G relative to 7” [es pp. 189-1901. 
The pair (.xa9 xUa) is called normal (appade [2, ibid.]) if c(a) = I. Bf we 
define x;(t) = x,(c(er)-It), then (XL, xMa) is normal. 

2. YPERALGEBRAIC INTERPRETATION OF 

A ~y~er~~gebr~ means an irreducible cocommutative P%opf alge 
be an algebraic affrne group scheme over k re sented by a commutative 
Hopf algebra A with the augmentation ideal For each integer R > 0: 
Al ’ is a finite dimensional algebra; hence 

b(G) = u WN* 
has the structure of a cocommutative (irreducible) coalgebra. It is at the 
same time a subalgebra of the dual algebra A*, and seen to become a 
hyperalgebra. It is called the hyperalgebra of 6. The general theory of 
hyperalgebras is developed in [S] and summarized in 19, (0.3), p. 2581. 

n with reviewing the required properties ,of hyperalgebras. 
et J be a subhyperalgebra of hy(6). J is closed if there is a closed 

subgroup scheme H of G such that J= by(H). J is dense if by(G) is the only 
closed subhyperalgebra containing J. There is a one-to-one correspondence 
between closed subhyperalgebras of by(G) and closed connected subgroup 



182 MITSUHIRO TAKEUCHI 

schemes of G given by by(H) H H, and this correspondence preserves and 
reflects the inclusion [8, (3.3.9), p. 1171. 

For any integer n > 0, there is some cocommutative coalgebra B,, called 
the n-dimensional Birkhoff-Witt coalgebra [8, (1.6), p. 391 such that the 
dual algebra Bz is isomorphic to k[ [t i,..., tn]] the algebra of formal power 
series in n indeterminates. An n-dimensional algebraic affine group scheme G 
is smooth if and only if by(G) -B, as coalgebras [8, (1.9.5), p. 561. It 
follows from [7, (4.1.9) and (4.2.7)] that a hyperalgebra is a Birkhoff-Witt 
coalgebra if (and only if) it is generated by sequences of divided powers. 

For two elements x, y in any cocommutative Hopf algebra, we put [8, 
(1.1O.Q p. 641 

[x3 VI = c X(1) Y(l) W,,,) G+,,) 

with the sigma notation and the antipode 5’. A subhyperalgebra H of a 
hyperalgebra normahzes another subhyperalgebra K if [x, y] E K for all 
x E H and y E K.. The above one-to-one correspondence preserves and 
reflects the normalization [8, (3.4.15), p. 1311. The subalgebra generated by 
all commutators [x, y] in a hyperalgebra J is a subhyperalgebra, denoted 
[J, J] and called the derived subhyperalgebra of J. We have the following 
closedness criterion: 

2.0.1. THEOREM. Let G be a connected algebraic afJine group scheme, 
and let J be a subhyperalgebra of by(G). 

(a) [8, (3.6.3), p. 1401: If J is of the Birkhoff-Witt type, then [J, J] 
is a closed subhyperalgebra of by(G). 

(b) [8, ibid. and (3.5.6), p. 1381: If G is smooth and J is dense in 
by(G), then (J, J] is the hyperalgebra of the derived subgroup scheme [G, G]. 

Let G, and G, be connected algebraic affine group schemes, and let 
f: G, + G, be a homomorphism. It induces a hyperalgebra map 
by(f): hy(G,) -+ hy(G,). f is faithfully flat if and only if by(f) is surjective 
(8, (3.3.7), P. 1161. b(f) is injective if and only if the kernel off is etale 
[8, (3.3.3), p. 1141. 

We will use the functorial characterization of the hyperalgebra: Let G be 
an algebraic affine group scheme. For any connected cocommutative 
coalgebra C, there is a group isomorphism natural in C 

Ker(G(C*) + G(k)) = Coalg,(C, by(G)) 

where the left-hand side means the kernel of the homomorphism induced by 
the canonical map C* + k, and the right-hand side means the group of all 
coalgebra maps C+ by(G) [S, (3.1.2), p. 1011. This characterization has the 
following important consequence (2.0.3). 
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Let it , >.*., tn) be the set of n indeterminates. For any algebra A, let 
Aj[t r )..., t,]] be the algebra of all formal sums 

6 t;l . . . t’,” . a(,, 

with a(,, in A for all (e) = (e, ,...) e,) with ei > 0. 
Let N be a hyperalgebra with comultiplication d and counit E. 

2.02. EFINITION. An element J&,, tCe)gC,) in with 
t(e) = f’ 1 . ~ - t? is called group-like if we have 

in the algebra (H @ N)[ [tI ,..., t,]] and &( g,,,) = SCej,COj ~ The set of all group- 
like elements in N[ [r 1 ,..., t, ] ] forms a subgroup of units 

gr WI It 1 ,..‘> t,] 1). 

2.0.3, %HEOREM. Let G be an algebraic affine group scheme over k and 
Set = by(G). There is a canonical i~omorph~sm of groups 

Ker(G(k[[t, ,.-, &I]> -S G(k)) + gr( 

where TC denotes the map induced from the augmentation. This isomorp~i~m 
is natural in k[ ItI,..., t,]] in the following sense: Let f: k[[t, ‘...) tn]] + 
q 1% 9’..i urn]] be an algebra map commuting with the ~~~~e~~at~o~~ FVe then 
get a commutative diagram: 

eGW [t I,..., trill>- G(k)) -+ gr 

I 
G(f) 

Ker(G(k[ [ul ,..., umll> --t G(k))- gr 

ProoJ We have k[ [ t r )..., t,]] = Bc and a natural group isomorphism 

Ker(G(B,*) -+ G(k)) N Coalg, 

By a simple calculation, we see the subgroup Coalg,(B,, H) corres 
the subgroup gr(H[ [tl ,..., t,]]) under the canonical is~rnor~h~~rn sf 

Hom,(B,, W) - M[ [t, ,-.? t,] 1. 

The claim follows from this. .E.D. 

Let us see what the above isomorphism becomes when G = G, and G,. 
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2.0.4. F’acr. Let k [ I”] and k[ U, U-r ] be the affrne Hopf algebra of G, 
and G,, respectively. (T is primitive and U is group-like.) Define linear 
maps 

by 

x(~): k[ T] --f k, H(“): k[ U, U- ‘1 -+ k (n = 0, l,...) 

(X(“), T’) = 6,,i for i>, 0, 

(fp),ui)= (f,)=i(i-lI):‘;rfFnn+l) for i~j7. 

(Note that (L) are integers, hence meaningful in k.) Then {X(n)}n>O and 
W”‘L>O form linear bases for hy(G,) and hy(G,), respectively. They are 
sequences of divided powers, i.e., 

&p)) = c x”’ @ x(j), &J(n)) = r H”’ @ H(j) 
i+j=n i+j=n 

for all IZ. We put 

x(t) = f tnP, H(t) = 2 tnHcn) 
iI=0 ?I=0 

in hy(G,)( [t]] and hy(G,)( [t]], respectively. They are group-like elements. 
Let k[[t 1 ,..., t,]la be the augmentation ideal of k[[t, ,..., tn]]. The 
isomorphism in (2.0.3) for G, and G, is given by the following formulas: 

G,(k[ [t l,..., ~,310> = m-QvW,)[h,...~ frill> 
w ] ,-*-, tn) +-+ X(p(t, ,-**, tJ>, 

GA1 + k[lt 1 ,..., &I lo) = gr@W,)W, ,..., t,,ll> 
1 + qt, ,..*, f,J t-t H(P(t, ,..., &)I. 

In particular we have 

X(t) X(u) = X(t + u) in WGJP, 43, 
H(t) H(u) = H(t + u + tu) in WG,Nt~ 41. 

This fact can be verified easily. We leave it to the reader (cf. [8, (1.5.8), 
p. 35 I). In characteristic 0, hy(G,) and hy(G,) are the polynomial algebras 
k[X”‘] and k[H”‘], respectively, and we have 

XW) = 
x(1)” 

ff(“) = 
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We give the hyperalgebraic meaning of (1. If(1A). Let the notation be as 
in Secnion 9. 

2,l. THEOREM. The hyperalgebra by(G) in ge~e~~te~ as an algebra by 
and hy(Ua)f5r a = +cti (i = I,..., I). 

Bro~$ The subalgebra J generated by by(T) aad hyQe/,) for a = fai is 
y(G) by (1.1). Hence the commutator s~~b~y~era~geb~a [J, Jj 
G, G]) by (2.0.1)(b). Since 6 = [G, Gj ~ T, we have by(G) = 

([G, GJ) . by(T) = J. QED. 

The next two items are direct consequences of (1.2) and (1.3). 

N,(t) = f t”Hh”‘, x,(t) = f tnxp 
n=5 n=o 

which are group-like elements in hy(C)[ It]]* 

2.4. THEOREM. For each a E @, we have 

in hjr(G)[[t, u]] with constant e = c(a) of (1.4). 

I+OO$ There is a canonical algebra map 

k[t, u, (1 + ctu)-“1 + k[ [t, 2.41 Jm 
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Hence the formula of (1.4) is valid in the group G(k[ [t, u]]), and both terms 
of the formula belong to Ker(G(k[ [t, u]]) --f G(k)). We have an associated 
formula in hy(G)[[t, u]] by (2.0.3). That is precisely the formula to be 
proved by (2.0.4). Q.E.D. 

We get the following proposition in the same way from 

a”(t) x,(u) a”(t - ‘) = X&(““‘%) 

for a,fiE@, tEG,, uEG,. 

2.5. PROPOSITION. For a,P E @ we have 

H,(t) X,(u) H,(t)- l = X,(( 1 + #a”%) 

in hy(G)[[t, ~11. 

3. SOME UNIVERSAL HYPERALGEBRA 

Let A = (A,), 1 < i, j < I, be a generalized Cartan matrix [5], i.e., (i) 
Aii = 2 for all i, (ii) A, is an integer <O if if j, (iii) A, = 0 if A,, = 0. We 
will construct a hyperalgebra %(A). 

Let F, be the free associative k-algebra with the unit generated by the set 
of symbols: 

{ITin), Xin), Yj”’ 1 i = l,..., 1, n = 1, 2 ,... }. 

We put in F,[[t]] 

Hi(t) = -f tvp, x,(t) = f t?Yy, 

?l=O ?I=0 

with Hi” = Xi’) = Yi”) = 1 for i = l,..., 1. 

Yi(t) = f tn Yy) 
n=O 

3.1. DEFINITION. Let a be the smallest ideal of F, such that the following 
identities hold in (F,/a)[ [t, u]]: 

(1) H,(t) H,(u) = H,(t + 24 + tu) for all i, 

(2) Hi(t) Hj(U) = Hj(U) H,(t) for all i, j, 

(3) Xi(t) X,(u) = AF,(t + u) for all i, 

(4) Yi(t) Y,(u) = Yi(t + U) for all i, 

(5) Xi(t) Yj(U) = Yj(U) Xi(t) if i # j, 

(6) H~(t)Xj(U)N~(t)-'=.X,((l + t)Aiju) for all i,j, 



(7) f(t) Yj(U) Hi(t)-’ = Yj((1 + tjwA”U) for all i,j, 

The quotient algebra F,/a is denoted by P(A). 

n other words, a is the ideal of Fl generated y the coefficients in F, of 
the differences of both sides of the above identities. Let %‘(A): (resp. 
S’(A);) be the subalgebra of %‘@a> generated by {Xi”‘), (resp. {Yj”‘},) for 
i= I,... I, 

3.2. LEMMA. The aIgebra %(A j is generated by %(A): apzd P(A)l: f&r 
i = I,..., 1. 

Proo$ We have by (8) 

in Z!(A)[[t, u]]~ Hence Hi (‘) belong to the subalgebra federated by 2’(A): 
and %(A);~ 

3.3. PROPOSITION. P(A) has a unique coalgebra structure such that (ij 
%(A) becomes a hyperalgebra, and (ii) {No”)},, {Xjn)}n, { Iz’~‘)~~ m-e 
sequences of divided powers for i = I,..., 1. 

rcm$ We can make F, into a hyperplane by condition (ii) above. The 
condition is equivalent to saying that Hi(t), Xi(t): Yi(t) are group-like 
elements in Ft[ Et]]. Hence both sides of all identities in (3.1) are group-like 
elements in Fl[ [r, u]]. It follows easily from this tbat a is a 

3.4. PRoPosrmoN. P(A) = [%‘(A), %(A)]. 

ProoJ: It is enough to show Xjn), Yj”’ E [%‘(A), %‘(A)] by (3.2). 
by (6) in %(A)[[& ~11 

X,((l + t)’ - l)u) = Hi(t) X,(24> H,(r)- cY,(uj-- I. 

The right-hand side is equal to 

c PU” [ply’, xyq. 
m,n>o 

y ~o~~ar~~~ the coefficients of Pun, we have 

Xi”’ = [If;““‘, Xi”‘] E [%(A>, 29 

The same is true for qn). 
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Let %(A)‘, P(A)+, %(A)- be the subalgebra of P(A) generated by 
{H!“)}n,i, {Xin)}n,i, { Yin)}n,i, respectively. 

3.5. PROPOSITION. z!(A) = 2qA)-z!(‘4)"q4)+. 

Proof. It is enough to show that Z!(A))~(A)“~(A)+ is a subalgebra. 
Since %!(A)’ normalizes P(A)*, we have only to show 

z!(A)+2v(A)- c 2q4)-q4)“q4)+. 

It follows from (5) and (8) that 

2v(A)p?(A)~~ c q4)J~q4)oq4): 

for any i, j. The claim follows easily from this. Q.E.D. 

In fact, we have the tensor product decomposition which will not be used 
to prove the main results. 

3.5’. THEOREM. The multiplication induces a coalgebra isomorphism 

%!(A)- @ %(A)0 @ P(A)+ -i 2!(A). 

Proof. The hyperalgebra ZP(A)k (with base field specified) is defined even 
when k is a commutative ring. In particular we have a hyperalgebra %%(A),, 
and Z!(A)k is precisely the scalar extension Z?(A)z @ k. Assume k is a field 
of characteristic 0 (or more generally a commutative Q-algebra). The iden- 
tities of (3.1) reduce to the following: 

(1) fq”’ = fy 
( 1 for all Iz, i, 

(2) [H{“, HJ’)] = 0 for all i, j, 

(3) Xjn) =q for all n, i, 

(4) yin) = * for all n, i, 

(5) [Xl”, Yj’);‘= 0 if i # j, 

(6) [Hi’), Xj’)] = A,,Xj’) for all i, j, 

(7) [HI”, Yjl)] = --AijY,!” for all i, j, 

(8) [Xi”, Y$“] = HI” for all i. 

Hence Z!(A)k is precisely the universal enveloping algebra of the Lie algebra 
generated by symbols 

{H’,” )...) fq”, xi” ‘...) xy, Y’,” )...) Yy’] 
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subject to relations (2), (5), (Q (7), (8). It follows from IS, (I.:)! that the 
product map induces a coalgebra isomorphism 

and tkat P(A): is the free associative algebra generates by jK~‘)9..04X~1)j 
(resp, {Yp,..., Yj”}). This is true for k = Q in particular. Et is easy to prove 

P(Ajz is identified with the Z-subalgebra of %(A)& g 
Xjn), Y{“r. It follows that the above isomosphisrn is v 

me fear any field or commutative ring k. 

We return to reductive groups. Let the notation be as before. 
isomorphisms x, for o! = *q (i= I,..., 2). 

Assume that (xai,xAni) i i= I,..., 1. Le? 
A = ((a:, a,)) he the Cartan matrix of (X9 X”, @, with rmpect to the base 
I 

Proo$ For the existence of 4, it is enough to verify the identities (1 t(8) 
hy(G)[[t, u]] by replacing (ff,(t>, Xj(t), Yi(t)) + ( 

entities (l)-(4) are trivially true, (5) follows frorrn 
and (6) and (7) from (2.5). It is clear that 

4W#‘) = WT), @2’(A)*) c hy(U’). 

y(T) normalizes @(A)) which is the subalgebra generated by by(U,) for 
CL = ai (i = I,..., I). Hence q@‘(A)) - by(T) is a subalgebra containing by(T) 
and by(U,) for CI = fcr, (i = l,..., 1). The last identity follows from 
(2.1). 

We emphasize that the hyperalgebra map is construeted by using only 
(x (L,,***9 Xa,’ X --ai)~.., X-,,). By the normality condition, (x-,,,..., x_~,> is 
determined by (xx,, ,..., x,I). Hence the hyperalgebra map is detesmined by 
@al V.I.9 .x,~) which may be chosen arbitrarily. 

4. THE ISOMORPHISM THEOREM 

We prove that if two reductive algebraic groups have isomorphic root data 
with respect to some maximal tori, then there is an isomor~h~sm of algebraic 
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groups inducing the isomorphism of root data. Some isomorphism of the 
maximal tori is associated with the isomorphism of the root data. Let us 
identify the maximal tori through that isomorphism. Strictly speaking we are 
considering two inclusions of the same torus into the reductive groups. Then, 
the two root data become the same. Hence we may begin with the following 
convention. 

Let G and G’ be reductive algebraic groups having a common maximal 
torus T. Assume that the root data of G and G’ with respect to T are the 
same (X, X”, @, @“). Let U, and U&, a E @, be the root groups of G and G’. 
We prove that there is an isomorphism G N G’ which is the identity on T. 
Such an isomorphism will induce U, N VA for all a E @. - - 

Let {a,,..., al} be a base of @, and A = ((a;, aj)) the Cartan matrix. 
Choose arbitrary sets of admissible isomorphisms 

xi: G,+ U,., I xi: G,+ U&. I (i = l,..., 1) 

and determine the admissible isomorphisms 

X-i: G,* U_,.y xLi: G,+ U’,, i (i = l,..., 1) 

in such a way that (xi, xpi) and (xi, xLi) are normal. Let o+ i be the image 
of the inclusion 

x”*i = (X*i, Xii): Go+ u+tLyi X ul,ai. 

Put d(T) = {(t, t) / t E T}. Let 

4: p’(A) -+ b(G) and $‘: Z(A) --f hy(G’) 

be the hyperalgebra maps determined by (xi ,..., xl) and (xi ,..., x;) respec- 
tively (3.6). Put 

& Z!(A) J% %(A) @ Z!(A) @@@’ b by(G) @ hy(G’) = hy(G x G’). 

4.1. LEMMA. (a) There is a unique connected closed subgroup H of 
G x G’ such that by(H) = Im@). 

(b) H contains all oi for i = k l,..., *l. 
(c) d(T) normalizes H. 

ProoJ (a) The hyperalgebra Im@) is generated by sequences of divided 
powers and-equal to the commutator subhyperalgebra by (3.3) and (3.4). 
Hence Im@) = by(H) for a uniquely determined connected reduced closed 
subgroup scheme H of G X G’ by (2.0.1)(a). H is identified with a closed 
subgroup of G X G’. (b) We have F(%(A)T) = hy(o*J by definition. Hence 
H contains Oki for i= l,..., 1. (c) d(T) normalizes ohi for all i since 
(t, t) gii(a)(t, t)-’ = x”*,(ai(t*‘)a) for t E T, a E G,. Hence hy(d(T)) 
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normalizes by(H) which is the subalgebra generated by hy(oJ for 
i = &I,..., +I (3.2). Therefore d(T) normalizes H. X.D. 

It follows from (c) that G=H. d(T) is a connected closed subgron~ of 
G x G’ having the hyperalgebra Im@) . hy(d(T)). e show that G is the 
graph of a desired isomorphism G N G’. This is done in a sequence of 
lemmas. 

4.2. kEMMA. (a) The projections prl : c.?-, G and pr2 : C?* 6’ are 
SWjC%dW. 

(b) G is reductive. 

ProoJ: (a) hy(pr,) and hy(pr,) are surjective by (3.6). pr, and 
p-? are surjective (or faithfully flat) (see below (2.0.1)). (b) 

ipotent radical of 6. Then pr,(R,) and pr, 
11 be the 

.) are trivial by (a). Mence 
= (1). 

4.3. LEMMA. b(G) n hy(T x I”> = hy(d(T)). 

ProoJ We have 

hy(@ = @‘W) WV’)) @W)+h 

hy(G x G’) = hy(U- x VI-) 0 hy(Tx T) @ hy(U’ x .I+) 

by (3.5) and (2.2). Since @S’(A)*) c hy(U’ x U’*), it follows that the 
multiplication induces a coalgebra isomorphism 

Let C be a cocommutative coalgebra and let f: C 3 by(G) be a coalgebra 
map. There is a unique decomposition 

f(c)=Cf-(C(,,)fO(C~Z))f+(C~3)) (@ E c> 

with coalgebra maps f ‘: C + hy(A(T)), f * : C + &(2!(A) * )* ( 
the sigma notation.) A similar decomposition is valid for coalgebra maps 
C + hy(G x G’), and the inclusion hy(6”) -+ hy(G x G’) preserves the decom- 
position Hence, if Im(f) is contained in hy(@ ,r? hy(T X T$ thenf* should 
be trivial. Thusf =f”. This means that hy(G”) f7 hy(T X T) = by@(T)). 

4.4. LEMMA. (a) A(T) is a maximal torus of G. 
(b) oki is a root group of G” with respect to A(T) i = I,..., 1. The 

projections induce isomorphisms 
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Proof (a) Let S be a maximal torus of G containing d(T). Applying 
pr, and pr2, we see S c TX T. Thus by(S) c hy(@ fI hy(T X T) = hy(d(T)). 
Hence S = d(T). (b) Follows from the proof of (4.1)(c). Q.E.D. 

Let 6 be the set of roots of (? with respect to d(T), and let 2 be the 
character group of d(T). The projection d(T) -+ T induces an isomorphism 
v: X + 2. Let oG, cx” E 6, be the root groups of G” with respect to d(T). 

4.5. LEMMA. (a) The projections pr, and pr, induce isomorphisms of 
Weyl groups 

W(d (T), G) + VT, G), W(d (T), G”) -+ W(T, G’). 

(b) {~(or,),..., ~(a,)} is a base for 6”. 

(c) q induces a bijection Sp --f 6. 

(d) pr, and pr, induce isomorphisms of root groups 

kY, + U,? L4 + U& 

for all a E @. 

ProoJ: (a) Follows from [l, p. 2821. (b) For i = l,..., Z, we have 
O*i= D*q(a.), hence &~(a~) are roots in 6. We show that every root in 6 is 
an integral linear combination of {~(a~),..., ~((LJ} of like sign. By the tensor 
product decomposition hy(@ = &Z?(A)-) @ hy(d(T)) @ @!(A)+), the Lie 
algebra Lie(g) is the direct sum P(&%(A)-)) @ Lie@(T)) 0 P@@(A)+)), 
where P(-) denotes the primitive elements. Since the algebra #Y(A)’ ) is 
generated by hy(oJ,..., hy(o,), every weight of the adjoint representation of 
d(T) on it is a non-negative integral linear combination of {~(a,),..., ~(a[)}. 
Every root of the representation on P@(%(A)’ )) is so a fortiori. The same is 
true for the (-) part. This proves the claim. (c) Every root is conjugate to a 
simple root under the operation of the Weyl group. Hence the claim follows 
from (a) and (b). (d) C onsider conjugacy by elements in N&(T)). We see 
that the set of those a E @ for which the statement is true is closed under the 
operation of the Weyl group. Since the set contains a base, it should be the 
whole. Q.E.D. 

We are now in a position to prove the main theorem. 

4.6. THEOREM. Let G and G’ be reductive algebraic groups over an 
algebraically closed field. Assume they have a common maximal torus T and 
ihat the root data of G and G’ with respect to Tare the same (X, x”, CD, CD”). 
There is an isomorphism of algebraic groups G N G’ which is the identity on 
T. 
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BrooJ iit is enough to show pr, : 6 -+ I; and pr, : 6- 6’ are 
~sorno~~h~srns~ It follows from (4.5) and (2.2) that hyfpr,) and hy(pv,) are 
~sorno~~~~srns. ence pr, and pr, are etale coverings (see 
Since the base Id is algebraically closed, this means th 

pr, (see the Introduction) are finite constant, eatified with som 
groups of rational points. Obviously, they are contained in the 
npce in the maximal torus d(T). Since pri are rno~~~~~~~b~srns on 

it foollows that er(pr,) are trivial. Hence pri are is~rn~r~~~srns~ 

5. THE :SOCENY -fREQREM 

e shah now use the above hyperalgebra method, slightly modified, tc 
prove the isogeny theorem. Let C and 6’ be reductive algebraic groups over 

T’ be maximal tori of G and 6’. Assume there is 
want to extend it to an isogeny G + G’. Let (X3 Xv, 
‘“) be the root data of (G, T) and (CT’, T’), respec 

isogeny J induces injective maps X’ ough which we 
identify X’ and x” as subgroups of X an In order that f 
extend to an isogeny G 3 G’, S] that there is a 

given by c1 t) a’, together with a fami!y {q(w)},,, of 
char(k)) such that 

a’ = q(m)ff in X3 a”=q(a)a’“inX’” 

for a E e assume this is the case. Let {cL,,.-.~ hxJ be a base of 
A = (CaYT aj)li,j=I,...,i3 and A' = ((ai" ajl))i,j=r,...,r~ 

5.1. LEMMA. (a) q(aJA;=Aiiq(aj)fir i, j= I,..., 1. 

(b) ial ,*..> a; } is a base of @‘. 

P.r-ooj (a) Follows from [6, (11.4.8), p. 2691. (b) It follows from /6, 
ibid./ that s,(O) = s,,@‘) for u, /I E @. For every root 01 E CPi, there are 
x, ,‘.I) x, E {a, ,.**, a,} such that M = sXIsXz . .e s,r_i(~,)~ then have 
a’=s,~s *~. s (x;) which is an integral linear combinati 
It is clearXihat tkhoefficients have the same sign. 

Let (Idin), Kin), Yin)}n,i and {Hf “‘I, Xf (“I, Y;““‘]n,i 
generators of W(A) and &‘(A’), respectively. 
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maps H,(t), X,(t), Yi(t) to Hf(tqCai) ), X;(tq(ai)), Y;(tq(“i)) respectively for 
i = l,..., 1. 

ProoJ: It is enough to verify that the conditions (l)-(8) of (3.1) are 
preserved by these substitutions. There is no problem about (l)-(5) and (8). 
We have by (.5.1)(a) that 

Hi’(P’“i)) x$4 9(aj)) fJj(t4(ai))--1 

=X;((l + t9(ai))A~jU9(aj))=X~({(l + t)AijU}9(aj))e 

Hence condition (6) is preserved. The same is true for (7). 

Choose arbitrary sets of admissible isomorphisms 

Q.E.D. 

xi: G, + Uai, x;: G, -+ U;,, I (i = I,..., 1) 

and determine the admissible isomorphisms 

X-i: G, --t U-,., xLi: G,+ U’,! I (i = l,..., I) 

in such a way that (xi, x-~) and (xi, xYi) are normal. Let oii be the image 
of the inclusion 

x”*i: Go + U+ai X Ui,,,, Z+!(a) = (X*i(U)y X;i(Ci4’ai’))* 

(Note that q(q) = 4(-c+).) Put g= {(t, f(t)) 1 t E T}. Let 

4: g’(A) + b(G), 4’: %(A’) + hy(G’) 

be the hyperalgebra maps related to (x, ,..., xr) and (xi ,..., x;), respectively, 

and put 

$2?(A) -+ %(A) @ %(A) ’ @@‘T by(G) @ hy(G’) = hy(G x G’). 

With the modification, we have almost the same lemmas as in Section 4. 
Thus: 

5.3. PROPOSITION. (a) There is a unique connected closed subgroup H 
of G x G’ such that by(H) = Im(&. 

(b) H contains all oi for i = f l,..., &l. 

(c) I? normalizes H. 

Let C?=H. F. 

(d) The projections pr, : C? --t G and pr, : G” -+ G’ are surjective. 

(e) C? is reductive. 
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(f) hy(6”) n hy(T x T”) = by(F). 
(g) F is a maximal torus of G. 

(h) o,i is a root group of G with respect TV F for i = I,..., 1. The 
projection pr, induces isomorphisms 

while the projection pr, igogenies 

8,p u;,, I 
for i = I,..., i. 

(i) pri and or, induce isomorphisms of WeyE groqs 

W( p, z() + W( T, G), W(F, G) + W(T’, G’). 

(j) Let q: X+ X(0 be the isomorphism corresponding to pr,; r-, T. 

nm {f?(a,L r(41 is a base of 8 the roots of G with re,ypect to T. 

(k) y induces a bijection CD + CD. 

(1) Let fJG, a’E 6, be the root groups of 6 reiated to f, The 
projection pri induces isomorphisms 

while the projection pr, isogenies 

This is proved in the same way as in Section 4. We leave the reader to 
verify details. As a consequence we have the Following isogeny theorem: 

5.4. THEOREM. Let G and 6’ be reductive algebraic groups over an 
algebraically closed field, and let T and T’ be maximal tori of 4; and G’, 
respectively. Let (X,X, CD, @“) and (X’, X’“, ‘“) be the root data of 
(G, T) and (G’, T’), respectively. Let f: T e an isogeny, and let 

u’: x” --f X” be the induced injective map 
‘, a c-) a’, together with a family q(a), a E 
such that 

2.4~‘) = q(a)a, u”(a”) = q(a) a’“, a E 

then f extends to an isogeny G -+ G’. 

Proof: pr, : G” --f G is an isomorphism just as in (4.6). e claim that 
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pr,: G” -+ 6’ is an isogeny. The (group scheme) kernel Ker(pr,) is finite (i.e., 
a finite group scheme) if its connected component is. A connected algebraic 
group scheme is finite (or infinitesimal) if and only if the hyperalgebra is 
finite dimensional. We have only to prove that the Hopf algebra kernel of 
hy(pr,): hy(G”) -+ hy(G’) is finite dimensional since it gives the hyperalgebra 
of Ker(pr,) [8, (3.1.5), p. 1031. By (2.2) we have tensor product decom- 
positions 

hy(G’) = hy(U’,;) 0 --. 0 hy(U’,;) 0 hy(T’) 

where {yr ,..., y,} are the positive roots in Q, in some order and we denote by 
oy the root group oqCyI, y E @. By (5.3)(l), the hyperalgebra map hy(pr,) 
has a finite dimensional kernel on each factor. Since the Hopf kernel is the 
tensor product of the intersections with each factor, it is finite dimensional. 
Hence pr, is an isogeny, and C? is the graph of a desired isogeny G --) G’. 

Q.E.D. 
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