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INTRODUCTION

We present a quite elementary proof of the isomorphism and isogeny
theorems for reductive algebraic groups over an algebraically closed field.
We do not require a special discussion of rank 2 groups. OQur method is to
construct directly the graph of an isomorphism or an isogeny as a closed
subgroup of the direct product by preassigning the hyperalgebra. We need
only standard results on reductive groups as summarized in Section 1. Let &
be an algebraically closed field of arbitrary characteristic, and let G and G’
be connected reductive algebraic groups over & with maximal tori 7 and 77,
respectively. We begin with the isomorphism theorem. Assume the root
datum (for which see [6, p. 189]) of G with respect to 7 is isomorphic to the
root datum of G' with respect to 7°. We are going io construct an
isomorphism of algebraic groups G — G’ which induces the isomorphism of
root data. To avoid the notational complexity, we think G and G’ have the
same maximal torus 7 and assume that the root data of G and G’ with
respect to T are the same (X, XY, @, @Y). This abuse of notation makes the
argument simple. Let {a,,..., ¢;} be a base of @. We construct some universal
hyperalgebra #(4) associated with the Cartan matrix 4 = ({a}, ;)), which
is defined by some generators and relations similar to the condition for
Kac—-Moody Lie algebras. There is a hyperalgebra map #(4) - hy(G X G')
whose image is the hyperalgebra of some connected closed subgroup # of
G X G' which is normalised by A(T)= {(t,£)|t in T}, and G = H - A(T) is
seen reductive with maximal torus A(7). We can prove that the projections
G- G and G- G’ are isomorphisms of algebraic groups. Hence G is the
graph of an isomorphism G — G’ which is the identity on 7. The isogeny
theorem can be proved quite similarly. In fact we need not prove the
isomorphism theorem since it is included in the isogeny theorem. We make
the isomorphism theorem precede the isogeny one because of its notational
simplicity.

178
0021-8693/83 $3.00

Copyright © 1983 by Academic Press. Inc.
All rights of reproduction in any form reserved.



180 MITSUHIRO TAKEUCHI

In case of semisimple groups, we can avoid use of the coroots. Since the
coroots @' are determined by the root system (X, @), two semisimple
algebraic groups are isomorphic if their root systems are isomorphic. We
will use coroots and root data to deal with reductive groups according to
[2, 6].

The main theorems of the paper are formulated in terms of linear algebraic
groups |[1,4,6]. The viewpoint of groups schemes [3, 10], however, is
required as a tool. A linear algebraic group is identified with the group of
rational points at some fixed algebraically closed field of some smooth
algebraic affine group scheme. Our main tool, the theory of hyperalgebras of
algebraic affine group schemes, is summarized in Section 2. The kernel of a
map of algebraic groups always means the group scheme kernel, but not the
set-theoretic kernel.

G, and G,, denote the one-dimensional additive and multiplicative groups,
respectively.

1. SoME STANDARD RESULTS ON REDUCTIVE GROUPS

We need know nothing about groups of semisimple rank 2 in order to
prove the isomorphism or isogeny theorem. What we assume about reductive
groups is very standard and relatively small as summerized in the following.
Mostly it concerns commutator relations of root groups. The main references
of this section are (1, 2, 4, 6].

Let & be an algebraically closed field. Every algebraic group is linear and
defined over k. Let G be a reductive group, 7' a maximal torus of G, @ the
set of roots of G with respect to 7, and {a,,..,a,;} a base of ®. For each
a & P, there is a connected T-stable subgroup U, of G together with an
isomorphism x,: G,— U, such that tx (a) t "' =x_(a(t)a) for t € T, a € G,.

1.1. THEOREM (1, p. 341; 4, p. 166|. G is generated by T and U, for
a=+a;, (= 1l..,1).

1.2. THEOREM |1, p. 352; 4, p. 174]. Let U* (resp. U™) be the subgroup
generated by U, for all positive (resp. negative) roots a. The product map
defines an open immersion of varieties

U XTXU" S G

Preassign any order on the positive (resp. negative) roots. Then the product
map induces isomorphisms of varieties

1 v,-Uu", 1Tu,-u-.

a>0 a<0
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1.3. ProposiTion [1, p. 332; 4, p. 203; 6, p. 207]. Leta,BE D, a+ +f.
U, commutes with U, if there is no root of the form mao + nff with m, n > 0.
In particular, U, commutes with U _oy Jor 1<i#E <L

Let X = X(T) be the character group of 7. It is a finite free abelian group
and its dual XV is identified with Hom(G,,, 7). We denote by {4, a) the value
of A€ X’ at a€X. We follow [2] for the definition of coroots. (The
definition of [6] is a bit different but equivalent.) In what follows, we view G
as a group functor on commutative k-algebras.

1.4, DeriNiTION OF COROOTS |2, pp. 156-158]. For each a € @, there
is a unique homomorphism «": G, — T together with an invertible element
¢ = c{a) € k such that

X Ox_(w)y=x_, ( ) a'(1+ctu)x, (

u t )
1+ ctu I+ ctu

in the group G(k[t,u, (1 +ctu)™']). The map «" is calied the coroot
associated with a. It does not depend on the cheice of {x_,x__). The set of
all coroots is denoted by @". The set (X, X, &, &) satisfies the axiom of a
root datum and called the root datum of G reiative to T [6, pp. 1891901,
The pair (x,,x_,) is called normal (apparide |2, ibid.]) if c(a)=1. If we
define x.(#) = x,(c{@) " '¢), then (x,x_,) is normal.

-

2. HYPERALGEBRAIC INTERPRETATION OF RESULTS IN SECTION 1

A hyperalgebra means an irreducible cocommutative Hopf algebra. Let &
be an algebraic affine group scheme over & represented by a commutative
Hopf algebra A4 with the augmentation ideal M. For each integer n >0,
A/M?" is a finite dimensional algebra; hence

hy(G)= U (4/M")*

has the structure of a cocommutative (irreducible} coalgebra. It is at the
same time a subalgebra of the dual algebra A*, and seen to become a
hyperalgebra. It is called the hyperalgebra of G. The general theory of
hyperalgebras is developed in [8] and summarized in [9, (0.3), p. 258]. We
begin with reviewing the required properties of hyperalgebras.

Let J be a subhyperalgebra of hy(G). J is closed if there is a closed
subgroup scheme H of G such that J = hy(H). J is dense if hy(G) is the only
closed subhyperalgebra containing J. There is a one-to-one correspondence
between closed subhyperalgebras of hy(G) and closed connected subgroup
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schemes of G given by hy(H)« H, and this correspondence preserves and
reflects the inclusion [8, (3.3.9), p. 117].

For any integer n > 0, there is some cocommutative coalgebra B,, called
the n-dimensional Birkhoff~Wist coalgebra [8, (1.6), p.39] such that the
dual algebra B is isomorphic to k[[?,,..., #,]] the algebra of formal power
series in n indeterminates. An n-dimensional algebraic affine group scheme G
is smooth if and only if hy(G)~ B, as coalgebras |8, (1.9.5), p. 56]. It
follows from [7, (4.1.9) and (4.2.7)] that a hyperalgebra is a Birkhoff-Witt
coalgebra if (and only if) it is generated by sequences of divided powers.

For two elements x, y in any cocommutative Hopf algebra, we put [8,
(1.10.5), p. 64

[xs y] = Z x(l)y(l)S(x(Z)) S(y(Z))

with the sigma notation and the antipode S. A subhyperalgebra H of a
hyperalgebra normalizes another subhyperalgebra K if [x, y] € K for all
xEH and yE€ K. The above one-to-one correspondence preserves and
reflects the normalization |8, (3.4.15), p. 131]. The subalgebra generated by
all commutators [x, y| in a hyperalgebra J is a subhyperalgebra, denoted
|/, J} and called the derived subhyperalgebra of J. We have the following
closedness criterion:

2.0.1. THEOREM. Let G be a connected algebraic affine group scheme,
and let J be a subhyperalgebra of hy(G).

(a) [8,(3.6.3), p. 140): If J is of the Birkhoff~Wiit type, then |J, J|
is a closed subhyperaigebra of hy(G).

(b) [8,ibid. and (3.5.6), p. 138]: If G is smooth and J is dense in
hy(G), then |J, J| is the hyperalgebra of the derived subgroup scheme |G, G).

Let G, and G, be connected algebraic affine group schemes, and let
f:G,—> G, be a homomorphism. It induces a hyperalgebra map
hy(f):hy(G,) - hy(G,). f is faithfully flat if and only if hy(f) is surjective
(8, (3.3.7), p. 116]. hy(f) is injective if and only if the kernel of f is etale
18, (3.3.3), p. 114].

We will use the functorial characterization of the hyperalgebra: Let G be
an algebraic affine group scheme. For any connected cocommutative
coalgebra C, there is a group isomorphism natural in C

Ker(G(C*) — G(k)) =~ Coalg,(C, hy(G))

where the left-hand side means the kernel of the homomorphism induced by
the canonical map C* — k, and the right-hand side means the group of all
coalgebra maps C - hy(G) |8, (3.1.2), p. 101]. This characterization has the
following important consequence (2.0.3).
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Let {#,,...¢,} be the set of n indeterminates. For any algebra A, let
Allty,.. t,]] be the algebra of all formal sums

Z til t‘:ln C Qg
(@
with a,, in 4 for all (e) = (e, ,..., e,) with ¢, > 0.

Let H be a hyperalgebra with comultiplication 4 and counit &.

2.0.2. DEFINITION.  An  eclement ), t9g.,, in H{[t,..,t,]] with
1@ =5 ... % is called group-like if we have

1 (o) ) :
D1 A(g) =Dt Y 20 ®gw
© © (&)= (0 +(d)

in the algebra (H ® H)[[t,,.... ,]] and &(g,)) = J().(0)- The set of all group-
like elements in H|[t,,..., ¢,]] forms a subgroup of units denoted by

gr(H [ty £,]])-

2.0.3. THEOREM. Let G be an algebraic affine group scheme over k and
let H="hy{G). There is a canonical isomorphism of groups

Ker(G(k[[t,,0s £,]]) = GK)) = gr(H[ [t s 1,]])

where © denotes the map induced from the augmentation. This isomorphism
is natural in k[[t,,...,t,]] in the following sense: Let f:k[[t,,..1,]]—
k(l4, o || be an algebra map commuting with the augmentation. We then
get a commutative diagram:

Ker(Gk[[# 1, t,]]) > G(k)) > gr(H[[t1500 1,]])
lcm lf
Ker(G(k[[u, s ] ]) > G(k)) = gr(H {1y oo 2} ])
Progf. We have k[[¢,,..., £,]| = B and a natural group isomorphism
Ker(G(BF)~ G(k)) ~ Coalg,(B,, H).

By a simple calculation, we see the subgroup Coalg,(B,, #} corresponds to
the subgroup gr(H|[¢,,..., #,]]) under the canonical isomorphism of algebras

Hom(B,, H) ~ H[[t,s... ]}

The claim follows from this. Q.E.D.

Let us see what the above isomorphism becomes when G = G, and G,,.
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2.0.4. Fact. Let k[T] and k{U, U] be the affine Hopf algebra of G,
and G,,, respectively. (T is primitive and U is group-like.) Define linear
maps

XM k[T >k, HP: k|U, U] - k (n=0,1,.)

by
(XM, TH=6,,; for i>0,

— 'i)zi(i—l)---(i——nJrl) ,
H™, U (n 1 2. n for i€Z.

(Note that (1) are integers, hence meaningful in k.) Then {X™},., and
(H™}, ., form linear bases for hy(G,) and hy(G,,), respectively. They are
sequences of divided powers, i.e.,

A(X(n)) = N xw ®X(J'), A(H(n)) — Z HW ®H(J’)
i+ﬁn i+j=n
for all n. We put
[ee) o0
X(n=> "x",  H@t)= > "H™

n=0 n=90

in hy(G)[[¢]] and hy(G,)|[#]], respectively. They are group-like elements.
Let k[[ty,...¢,]]¢ be the augmentation ideal of k[[¢{,...2,[]. The
isomorphism in (2.0.3) for G, and G,, is given by the following formulas:

Golkllt150s 2,]10) = grhy (G (2 50ms £,]1)
Pt s t,) o X(P(Ly s t,)),
G (L + k({21500 1,]10) = gr(y (G )1 {810 1,11
14 Py, t,) < H(P(E, o0 £,)).
In particular we have
X(0) X(u) = X(t +u) in - hy(Go)[[z ul),
H)Hu)=H(t +u + tu) in  hy(G,)[[t u]]

This fact can be verified easily. We leave it to the reader (cf. [8, (1.5.8),
p. 35]). In characteristic 0, hy(G,) and hy(G,,) are the polynomial algebras
k[X™V] and k[H"], respectively, and we have

X(n) —

xwr

H(n) _ (H(l) )

n
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We give the hyperalgebraic meaning of {1.1}~(1.4). Let the notation be as
in Section 1.

2.1. THEOREM. The hyperalgebra hy(G) is genemted as an algebra by
hy(T) and hy(U,) for a = +a; (i=1,..,]).

Proof. The subalgebra J generated by hy(7) and hy(U,) for a = +g; is
dense in hy(G) by (1.1). Hence the commutator subhyperalgebra [J,J]
equals hy([G, G]) by (2.0.1)(b). Since G=[G, G| - T, we have hy(G)=
hy(|G, G}) - hy(T) =J. Q.E.D.

The next two items are direct consequences of {1.2) and (1.3).

2.2. TaeoreM. The product map defines an iscmorphism of coaigebras
hy(U™) ® hy(T) ® hy(U™*) - hy(G).

Let {7y, ¥} be the positive roots in any order. The product map induces
isomorphisms of coaigebras

hy(U,)® -+ @hy(U, )~ hy(U"),
hy(U_,)® - ®hy(U_, )= hy(U").
2.3. ProposirioN.  hy(U, ) commutes with hy(U_, ) for } <i#j< 1

For each a € @ and n >0, let H and X be the images of H" and
X' (2.0.4) by the hyperalgebra maps

hy(a*): hy(G,,) - hy(T), hy(x,): hy(G,) - hy(U,)

respectively, Put

[ee)

[v o]
H,n= Y rHY, X, (0=

n=90 n=0

(rxm

which are group-like elements in hy(G)[[¢}].

2.4, THEOREM. For each o € @, we have

>Ha(ctu)Xa( d )

1+ ctu

X)X w)=X_, (1 L

in hy(G)[[¢, u]] with constant ¢ = c(a) of (1.4).

Proof. There is a canonical algebra map

klt,u, (1 4 ctu)™ '] > k[t u]].
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Hence the formula of (1.4) is valid in the group G{(k|[t, u}]), and both terms
of the formula belong to Ker(G(k{[z, u]]) - G(k)). We have an associated
formula in hy(G)[[¢, u]] by (2.0.3). That is precisely the formula to be
proved by (2.0.4). Q.E.D.

B § V7RSS, TR oSy | [ TP 1Y Sam
We get the 1ollowing proposition in

a¥(t) xz(u) (17" = x5 (1P u)
fora,fe D, t€ G, ucG,.

2.5. ProrosITiON. For a,ff € @ we have
H () Xp(u) Ho ()" = Xy((1+ 1)@ Pu)

in hy(G)[[£, u]].

3. SoME UNIVERSAL HYPERALGEBRA

Let A=(4;), 1<1i, j<I, be a generalized Cartan matrix [5], ie., (i)
A; =2 for all i, (ii) 4 is an integer <0 if i # j, (iii) 4;=0if 4;;,=0. We
will construct a hyperalgebra #Z(4).

Let F, be the free associative k-algebra with the unit generated by the set
of symbols:

IH®, X YW i=1,.,Ln=12.}

We put in Fi[[¢]]

[ee] 0 o}
Hi(t): Z thz(‘n)a Xi(t): V tnXﬁn)’ Yi(t): Z tny§n)
n=90 n=0 n=0

with H® = X = Y® = 1 for i = 1,..., L

3.1. DEFINITION. Let a be the smallest ideal of F, such that the following
identities hold in (F,/a){[¢t, u]]:

(1) H,(t)Hfu)=HJt+ u+ tu) for all i,

(2) H(t)Hj(u)=H;(u) H(t) for all i, j,

3) X)) X,(u)= X, +u) for all i,

@) YO Y,(u)=Y,(t+u) for all i,

(5) X0 V() = Y,(u) X,(0) if i # j,

(6) Ht) X;(u) H(t) ' = X;,(1 + t)*vu) for all i, j,
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(1) HO)YuyH()"' =Y,((1 + 1)) for all i, j,

) X0 Y,-<u>=Yi(

u
P+ tu

{
Hit X.(_—_-.\f all i,
) ) A\ m) or all ]

The quotient algebra F,/a is denoted by # (4 ).

In other words, a is the ideal of F, generated by the coefficients in 7, of
the differences of both sides of the above identities. Let Z(4)} (resp.
#(A4);) be the subalgebra of #Z(4) generated by {X™}, (resp. {Y™},) for
i=1,.1

3.2. LemMa. The algebra % (A) is generated by % (A);" and % (4); for
i=1,.,1l

Proof. We have by (8)
—t \

I—HM/3

Hm) = ¥, (15 ) X0 v %,

in Z(4)[t,u]]. Hence H{” belong to the subalgebra generated by Z(4);}
and Z(4); .

3.3. PROPOSITION. #(A) has a unique coalgebra structure such that (1)
#(A) becomes a hyperalgebra, and (i) {H{"},, X"}, (Y"1, are
sequences of divided powers for i=1,..., L.

"

Proof. We can make F, into a hyperplane by condition (ii) above. The
condition is equivalent to saying that H,(t), X{#), Y{¢) are group-like
elements in F,[{¢]]. Hence both sides of all identities in (3.1} are group-like
elements in F,[{#, u]]. It follows easily from this that a is a Hopf ideal of F,.

Q.E.D.

3.4, PROPOSITION. Z(A)= [#(A), # (4)].

Proof. 1t is enough to show X\, YI" € % (4), #(A)] by (3.2). We have
by (6) in Z(4)[[t, u]]

X((1+0° = D) =H ) X () Hy(6) "X, (u)™".
The right-hand side is equal to
Z Imun[HIgm)’ Xl(n)]_

m,n>0
By comparing the coefficients of 1*"u”, we have
X0 =[HPP, X{| € [7(4), % (4)].

The same is true for Y. Q.E.D.
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Let Z(A4)", #(4)*, #(A)~ be the subalgebra of #(4) generated by
H{™ Vi (XY n,i0 {Y1" )10 TESPECtively.

3.5. PROPOSITION. #(A)=#%(A)"#%(4)°Z (A)*.

Progf. 1t is enough to show that Z(4) #(4)’#(A)" is a subalgebra.
Since % (4)" normalizes % (4)*, we have only to show

WA WA c#(A) XA %A
It follows from (5) and (8) that
ZA)u )y 2 (A7) % A}
for any i, j. The claim follows easily from this. Q.E.D.

In fact, we have the tensor product decomposition which will not be used
to prove the main results.

3.5’. THEOREM. The multiplication induces a coalgebra isomorphism
ZA)” QA @UA)" > 7(4).

Proof. The hyperalgebra # (4), (with base field specified) is defined even
when k is a commutative ring. In particular we have a hyperalgebra Z(4),.
and % (4), is precisely the scalar extension #(4); ® k. Assume k is a field
of characteristic 0 (or more generally a commutative Q-algebra). The iden-
tities of (3.1) reduce to the following:

HY
(1) H®= ( ’; )for all n, i,

(2) [H", H"]=0 for all i, j,

Xgl) n
3) x» :(—;lz'-)_ for all n, i,

o |
4 Y )=—j—— for all n, i,

(5) [XP, Y =0if i+,

(6) [HM, XP]=4,XV for all i, j,

(7 [Hg”, Yj(-”] = —AinJ(.” for all i, j,

(8) XV, Y] =H? for all i
Hence Z(4), is precisely the universal enveloping algebra of the Lie algebra
generated by symbols

1 1 1 1 1 n
{HY,.., HV, XV, X0, vV, vivy
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subject to relations (2), (5), (6), (7), {8). It foliows from [5, (1.1)} that the
product map induces a coalgebra isomorphism

YA QUMARUA) » 7 (A

and that Z{4)F is the free associative algebra generated by (XiV,.., X{"}
(resp. {Y'",..., YiV1). This is true for k= Q in particular. It is easy to prove
that #(A4), is identified with the Z-subalgebra of % (4} generated by all
H X0y Tt follows that the above isomorphism is valid for k=7,
hence for any field or commutative ring . Q.E.D.

We return to reductive groups. Let the notation be as before. We use the
isomorphisms x, for a = +a, (i=1,.., ).

3.6. PROPOSITION. Assume that (x,,x_, ) is normal for i=1,.,1. Ler
A = (&}, a,;)) be the Cartan matrix of (X, X, @, D") with respect to the base
{ay oy ;). With the notation above (2.4) we have a hyperaigebra map

9: % (4) - hy(G)

such that (H{") = HJ), p(X{") = X7, 9(Y{") = XU, . We have

(A ) chy(D), ¢#(A)*)<hy(U*), (7 (4)) - hy(T)=hy(G).

Progf. For the existence of ¢, it is enough to verify the identities (1)-(8)
in hy(G)[[1, u]] by replacing (H,(0), X,(2), -Yi(1) = (H, (1), X, (D, X _, (1))
Identities (1}-(4) are trivially true, (5) follows from (2.3), (8) from (2.4),
and (6) and {7) from (2.5). It is clear that

¢(7(4)°)<hy(T),  ¢(#(4)*)<hy(U=).

hy(T") normalizes ¢(#% (A4)) which is the subalgebra generated by hy(U,) for
o= +ta; (i=1,.,1). Hence ¢(# (4)) - hy(T) is a subalgebra containing hy(7")
and hy(U,) for a= +o; (i=1,...,1). The last identity follows from this by
2.1). Q.E.D.

We emphasize that the hyperalgebra map is constructed by using only
(X smees X Xy senes X g ) By the normality condition, (X g o X_g)) I8
determined by (x, ..., X, ). Hence the hyperalgebra map is determined by
(xal,.,., xal) which may be chosen arbitrarily.

4. THE ISOMORPHISM THEOREM

We prove that if two reductive algebraic groups have isomorphic root data
with respect to some maximal tori, then there is an isomorphism of algebraic
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groups inducing the isomorphism of root data. Some isomorphism of the
maximal tori is associated with the isomorphism of the root data. Let us
identify the maximal tori through that isomorphism. Strictly speaking we are
considering two inclusions of the same torus into the reductive groups. Then,
the two root data become the same. Hence we may begin with the following
convention.

Let G and G’ be reductive algebraic groups having a common maximal
torus 7. Assume that the root data of G and G’ with respect to T are the
same (X, X, @, @"). Let U, and U/, a € @, be the root groups of G and G'.
We prove that there is an isomorphism G ~ G’ which is the identity on 7.
Such an isomorphism will induce U, ~ U/, for all ¢ € @. T

Let {a,,.,a,} be a base of @, and 4 = ({a},q;)) the Cartan matrix.
Choose arbitrary sets of admissible isomorphisms

x:G,~U,, x;: G~ U, (i=1..D
and determine the admissible isomorphisms
x_;:1G,~U_,, xL;1G» UL, i=1..1)
in such a way that (x;,x_,) and (x], x";) are normal. Let U_, be the image
of the inclusion
Xpp= (e xi): G Uy X UYL,

Put A(T)={(t, )| t& T}. Let
¢9:#(A)-hy(G) and  ¢':%(4d)~hy(G')

be the hyperalgebra maps determined by (x,,...,x;) and (x{,..., x]) respec-
tively (3.6). Put

¢?/(A)—>?/(A)®%(A) ~2225 hy(G) ® hy(G') = hy(G X G).

4.1. LemmA. (a) There is a unique connected closed subgroup H of
G X G' such that hy(H) = Im(¢).

(b) H contains all U, for i = +1,..., +I
(c) A(T) normalizes H.

Proof. (a) The hyperalgebra Im(g) is generated by sequences of divided
powers and equal to the commutator subhyperalgebra by (3.3) and (3.4).
Hence Im(@) = hy(H) for a uniquely determined connected reduced closed
subgroup scheme H of G X G’ by (2.0.1)(a). H is identified with a closed
subgroup of G X G’. (b) We have §(Z(4)7)=hy(T, ) by definition. Hence
H contains U,; for i=1,.,L (c) A(T) normalizes G,,; for all i since
)%, (a)t, )" =%, (a,(t¥)a) for t€T, a€G,. Hence hy(4(T))
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normalizes hy(H) which is the subalgebra generated by hy(U,) for
i=41,.., £/ (3.2). Therefore A(T) normalizes H. Q.ED.

It follows from (c) that G=H - A(T) is a connected closed subgroup of
G X G' having the hyperalgebra Im(g) - hy(4(T)). We show that G is the
graph of a desired isomorphism G~ G’. This is done in a sequence of
lemmas.

4.2. LEmMA. (a) The projections pr,:G— G and pr,:G— G’ are
surjective.
(b) G is reductive.

Progf. (a) hy(pr,) and hy(pr,) are surjective by (3.6). Hence pr, and
pr, are surjective (or faithfully flat) (see below (2.0.1)). (b) Let R, be the
unipotent radical of G. Then pr (R,) and pr,(R,) are trivial by (a). Hence
R,= (1).

4.3, LemMa.  hy(G) Nhy(T X T) = hy(4(T)).

Proof. We have

by(G) = §(Z (4)") hy(A(T)) g(# (4) "),
hy(GX G)=hy(U” XU T)®hy(TX T)®hy(U" X U'™)
by (3.5) and (2.2). Since g(Z(4)*)chy(U* X U’*), it follows that the
multiplication induces a coalgebra isomorphism

J(#(4) )@ hy(d(T) ® g(# (4) ") - hy(G).

Let C be a cocommutative coalgebra and let f: C — hy(G) be a coalgebra
map. There is a unique decomposition

f©) :Zf_(c(l))fo(c(z))f+(c(3)) (ceC)

with coalgebra maps f°: C —hy(A(T)), f*: C— §(#(A)*). (We are using
the sigma notation.) A similar decomposition is valid for coalgebra maps
C - hy(G X G'), and the inclusion hy(G) - hy(G X G’) preserves the decom-
position. Hence, if Im() is contained in hy(G) N hy(T X T, then /' * should
be trivial. Thus /= f°. This means that hy(G) N hy(T x T) = hy(4(T)).

4.4. Lemma. (a) A(T) is a maximal torus of G.

(b) ﬁii is a root group of G with respect to A(T) for i=1,...,1. The
projections induce isomorphisms

[7ii—’U;taia ﬁii_’ U/iai (f: Toeers Z}

481/85/1-13
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Proof. (a) Let S be a maximal torus of G ~containing 4(T). Applying
pry and pr,, we see S < T X T. Thus hy(S) < hy(G) Nhy(T X T) = hy(d(T)).
Hence S = A(T). (b) Follows from the proof of (4.1)(c). Q.E.D.

Let @ be the set of roots of G with respect to A(T), and let X be the
character group of A(T). The projection 4(7)~ T induces an isomorphism
mX->X Let U;,a€e &, be the root groups of G with respect to A(T).

4.5. LemmA. (a) The projections pr, and pr, induce isomorphisms of
Weyl groups

W(A(T), G)» W(T,G),  W(A(T),G)— W(T,G").

(b)  {n(ety)sm.r 7(et))} is a base for P.
(c) 7 induces a bijection @ — .
(d) pr, and pr, induce isomorphisms of root groups

Un(a)

-U,, U,.—U.

n(e)
Jorall a € @.

Proof. (a) Follows from [1, p. 282] (b) For i=1,.,I, we have
U,,=0, tap > €NCE 17(a;) are roots in @. We show that every root in @ is
an integral linear combination of {n(a),..., nia,)} of like sign. By the tensor
product decomposition hy(G) = (% (4) ™) ® hy(A(T)) ® ¢(# (4)*), the Lie
algebra Lie(G) is the direct sum P((% (4)~)) ® Lie(d(T)) ® P(3(Z (4))),
where P(—) denotes the primitive elements. Since the algebra ¢(% (4)*) is
generated by hy(U.),..., hy(U)), every weight of the adjoint representation of
A(T) on it is a non-negative integral linear combination of {#{a,),..., 7(e;)}.
Every root of the representation on P(3(% (4)*)) is so a fortiori. The same is
true for the (—) part. This proves the claim. (¢) Every root is conjugate to a
simple root under the operation of the Weyl group. Hence the claim follows
from (a) and (b). (d) Consider conjugacy by elements in Nz{4(T)). We see
that the set of those o € @ for which the statement is true is closed under the
operation of the Weyl group. Since the set contains a base, it should be the
whole. 7 Q.ED.

We are now in a position to-prove the main theorem,

4.6. THEOREM. Let G and G' be reductive algebraic groups over an
algebraically closed field. Assume they have a common maximal torus T and
that the root data of G and G' with respect to T are the same (X, X", @, &),
There is an isomorphism of algebraic groups G ~ G' which is the identity on
T.
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Proof. 1t is enough to show pr:G—G and pr,:G—G' are
isomorphisms. It follows from (4.5) and (2.2) that hy{pr,) and hy({pr,) are
isomorphisms. Hence pr, and pr, are etale coverings (see below (2.0.1}).
Since the base field is algebraically closed, this means that the kernels of pr,
and pr, (see the Introduction) are finite constant, hence identified with some
finite subgroups of rational points. Obviously, they are contained in the
center, hence in the maximal torus A(7). Since pr, are monomorphisis on
A(T), it follows that Ker(pr,) are trivial. Hence pr; are isomorphisms.

Q.E.D.

5. THE ISOGENY THEOREM

We shall now use the above hyperalgebra method, slightly modified, te
prove the isogeny theorem. Let G and G’ be reductive algebraic groups over
k and let T and 7”7 be maximal tori of G and G’. Assume there is an isogeny
[ T—77. We want to extend it to an isogeny G— G'. Let (X, XV, @, "} and
(X', X", @', ¢") be the root data of (G, T) and (G', T"), respectively. The
isogeny f induces injective maps X' — X and XV X', through which we
identify X’ and X¥ as subgroups of X and X'V, respectively. In order that /'
extend to an isogeny G — G', it is necessary |6, p.268] that there is a
bijection @~ &’ given by @« a’, together with a family {g(a}},co Of
powers of Max(1, char(k)) such that

a'=g(a)a in X, a'=gle)a’ in X"

for o € @. We assume this is the case. Let {a,,..., o,} be a base of @, and let
A= (af,a;)) o, and A" = ((a]", a))); j=1. i

5.1. Lemma.  (a) qla) A =A4,q(a) for i, j=1,.., L
(b) {ai,.,a}}is a base of D'.

Proof. (a) Follows from [6, (11.4.8), p.269]. (b) It follows from [6,
ibid.] that 5,(8) =s,.(8") for a,f € @. For every root a € @, there are
Xipos X, € {01,y @} such that a=s, s, -5, (x,) We then have
O =5y S S l(x;) which is an integral linear combination of {a{,..., a; }.
1t is clear that the coefficients have the same sign. Q.E.D.

Let (H™, X®™, Y™}, ,and (H{"™, X[, ¥Y]"™},  be the canonical sets of
generators of Z{(4) and Z (4'), respectively.

5.2. LEMMmA. There is a hyperalgebra map o: % {4)— #(4’') such that
the induced k[[t]}-algebra map

AONUIEEACRIIGE
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maps H{t), X(t), Y{t) to H/(7*), XI(t7@?), YI(t9*?) respectively for
i=1,..,L

Proof. It is enough to verify that the conditions (1)~(8) of (3.1) are
preserved by these substitutions. There is no problem about (1)-(5) and (8).
We have by (5.1)(a) that

Hi(t0) X)) Hy(" )
= X} (1 + 17@0) iy 2Py = X7({(1 + £)*1u}4P),
Hence condition (6) is preserved. The same is true for (7). Q.E.D.
Choose arbitrary sets of admissible isomorphisms
%:G > Uy, x:Goo U, (i=1..1
and determine the admissible isomorphisms
X ;1G,~U_,., X2 G- U, (i=1..0

in such a way that (x;,x_;) and (x},x’ ;) are normal. Let U, be the image
of the inclusion

X, G- Uig, X U’ia;_, X (a)= (xti(a)’xlii(aq(ai)))‘
(Note that g(a;) = g(—a;).) Put T={(t, /(1)) |t € T}. Let
9: 7 (4) - hy(G), ¢ % (A') - hy(G')

be the hyperalgebra maps related to (xi,..., x;) and (x{,..., X]), respectively,
and put

§:%(4)»%(4) ® % (4) +2%% hy(G) ® hy(G") = hy(G X G").

With the modification, we have almost the same lemmas as in Section 4.
Thus:

5.3. ProposITION. (a) There is a unique connected closed subgroup H
of G X G’ such that hy(H)=Im(¢).
(b) H contains all U, for i = +1,..., +1.
(¢) T normalizes H.
Let G=H-T.
(d) The projections pr,: G- G and pr,: G- G’ are surjective.
(e) G is reductive.
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() hy(G)YNhy(Tx T") = hy(7).
(g) T is a maximal torus of G.

(h) U,; is a root group of G with respect to T for i=1,.,1 The
projection pry induces isomorphisms

Jori=1,.,1L
(i) pr, and pr, induce isomorphisms of Weyl groups

w(T, &)~ W(T,G), W, G)-»w(T, G

(G) Let n: X » X(T) be the zsomorphzsm correspondmg 1o pry: T-T.
Then {n(ct, )., #(a,)} is a base of D the roots of G with respect to T.

(k) ¥ induces a bijection & > ®.

(1) Let Uy, A€ P, be the root groups of G related to T. The
projection pr, induces isomorphisms

U U

ey 7 Va

while the projection pr, isogenies

. . -U.,

n(a) a

Jorag€ @.

This is proved in the same way as in Section 4. We leave the reader to
verify details. As a consequence we have the following isogeny theorem:

5.4, THEOREM. Let G and G’ be reductive algebraic groups over an
algebraically closed field, and let T and T' be maximal tori of G and G’,
respectively. Let (X, XY, @, ®") and (X', X", @', BV} be the root data of
(G, T) and (G',T"), respectively. Let f:T—T' be an isogeny, and let
u: X' X and w: X' — X" be the induced injective maps. If there is a
bijection @ ~ &', a < a', together with a family g(a), a € @, of powers of
Max(1, char{k)) such that

u(@)=gla)e, w@)=gqla)a”, o€
then f extends to an isogeny G — G'.

Proof. pr,:G— G is an isomorphism just as in (4.6). We claim that
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pr,: G- G’ is an isogeny. The (group scheme) kernel Ker(pr,) is finite (i.e.,
a finite group scheme) if its connected component is. A connected algebraic
group scheme is finite (or infinitesimal) if and only if the hyperalgebra is
finite dimensional. We have only to prove that the Hopf algebra kernel of
hy(pr,): hy(G) - hy(G") is finite dimensional since it gives the hyperalgebra
of Ker(pr,) [8, (3.1.5), p. 103]. By (2.2) we have tensor product decom-
positions

hy(@)=hy(U_,)® -+ ® hy(T_, ) ® hy(T)
®hy(0,)® - ®@hy(T,)

hy(G") =hy(U’,)® - @ hy(U",, ) ® hy(T")
@hy(U;)® -+ ®hy(U},)

where {y,,..., ¥,,} are the positive roots in @ in some order and we denote by
U, the root group U, y € @. By (5.3)(1), the hyperalgebra map hy(pr,)

n(y) >
has a finite dimensional kernel on each factor. Since the Hopf kernel is the

tensor product of the intersections with each factor, it is finite dimensional.
Hence pr, is an isogeny, and G is the graph of a desired isogeny G — G'.
Q.E.D.

ACKNOWLEDGMENTS

I would like to thank Professor A. Borel for reading an earlier draft and suggesting several
points to be improved.

REFERENCES

1. A. BOREL, Linear algebraic groups, Benjamin, New York, 1969.

2. M. DEMAZURE AND A. GROTHENDIECK, Schémas en groupes, III, Lecture Notes in
Mathematics No. 153, Springer-Verlag, Berlin/New York, 1970.

3. M. DemazuE AND P. GABRIEL, “Groupes algébriques,” Vol.I, North-Holland,
Amsterdam, 1970,

4. J. E. HumpHREYS, Linear algebraic groups, Graduate Texts in Mathematics No. 21,
Springer-Verlag, Berlin/New York, 1975.

5. J. LErowsky, Lecture on Kac-Moody Lie algebras, Université Paris VI, Spring 1978.

6. T. A. SPRINGER, Linear algebraic groups, Progress in Mathematics No. 9, Birkhiuser,
Boston, 1981.

7. R, HEYNEMAN AND M. SWEEDLER, Affine Hopf algebras, II, J. Algebra 16 (1970),
271-297.

8. M. TAKEUCHI, Tangent coalgebras and hyperalgebras, I, Japan. J. Math. 42 (1974),
1-143.

9. M. TAKEUCHI, On coverings and hyperalgebras of affine algebraic groups, Trans, Amer.
Math. Soc. 211 (1975), 249-275.

10. W. C. WATERHOUSE, Introduction to affine groups schemes, Graduate Texts in
Mathematics No. 66, Springer-Verlag, Berlin/New York, 1979.



