595 research outputs found

    A comparison of ancient deltaic shoreline progradation with modern deltaic progradation rates: Unravelling the temporal structure of the shallow-marine Blackhawk Formation, Upper Cretaceous Western Interior Seaway, USA

    Get PDF
    Understanding how sedimentary rocks represent time is one of the significant challenges in sedimentology. Sedimentation rates retrieved from vertical sections are strongly timescale dependent, which means that we cannot use empirical rate data derived from vertical sections in modern environments to interpret the temporal structure of ancient sedimentary deposits. We use the Lower to Middle Campanian Blackhawk Formation deposits in eastern Utah and western Colorado as a natural laboratory to test a source-to-sink methodology circumventing this timescale dependence by relating modern progradation rates to the deltaic shoreline progradation of ancient siliciclastic rocks. Our objective is to quantify how much time is needed to account for the observed cumulative deltaic shoreline progradation recorded by the shallow-marine sandstone bodies of the Blackhawk Formation in terms of progradation rates derived from comparable modern deltaic systems. By making the simplifying assumption that the Blackhawk Formation rocks were deposited along a linear coastline that only grew by aggradation and progradation, it is possible to argue that the stratigraphic completeness of two-dimensional dip-oriented stratigraphic cross-sections through these deposits should be high. Furthermore, we hypothesise that delta progradation estimates capture a significant portion of the biostratigraphically and radiometrically constrained duration of the succession. By comparing the recorded progradation with modern progradation rates, we estimate that we need ca. 20% (median value, with minimum and maximum estimates of 2% and 300%) of the time available from biostratigraphic and radiometric dating to account for the progradation recorded by the sedimentary deposits. This indicates that long-term progradation rates averaged over the entire duration of the Blackhawk Formation were only a factor of five times slower than the modern progradation rates derived from observations over periods that are five to six orders of magnitude shorter. We conclude that a significant amount of time is represented by prograding deltaic shoreline deposits and that by considering the cumulative shoreline progradation, we could limit the effects of timescale dependence on the rate estimates used in our analysis.publishedVersio

    Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin

    Get PDF
    Present-day catchments adjacent to sedimentary basins may preserve geomorphic elements that have been active through long intervals of time. Relicts of ancient catchments in present-day landscapes may be investigated using mass-balance models and can give important information about upland landscape evolution and reservoir distribution in adjacent basins. However, such methods are in their infancy and are often difficult to apply in deep-time settings due to later landscape modification. The southern Barents Sea margin of N Norway and NW Russia is ideal for investigating source-to-sink models, because it has been subject to minor tectonic activity since the Carboniferous, and large parts have eluded significant Quaternary glacial erosion. A zone close to the present-day coast has likely acted as the boundary between basin and catchments since the Carboniferous. Around the Permian-Triassic transition, a large delta system started to prograde from the same area as the present-day largest river in the area, the Tana River, which has long been interpreted to show features indicating that it was developed prior to present-day topography. We performed a source-to-sink study of this ancient system in order to investigate potential linkages between present-day geomorphology and ancient deposits. We investigated the sediment load of the ancient delta using well, core, two-dimensional and three-dimensional seismic data, and digital elevation models to investigate the geomorphology of the onshore catchment and surrounding areas. Our results imply that the present-day Tana catchment was formed close to the Permian-Triassic transition, and that the Triassic delta system has much better reservoir properties compared to the rest of Triassic basin infill. This implies that landscapes may indeed preserve catchment geometries for extended periods of time, and it demonstrates that source-to-sink techniques can be instrumental in predicting the extent and quality of subsurface reservoirs.publishedVersio

    A comparison of ancient deltaic shoreline progradation with modern deltaic progradation rates: Unravelling the temporal structure of the shallow-marine Blackhawk Formation, Upper Cretaceous Western Interior Seaway, USA

    Get PDF
    Understanding how sedimentary rocks represent time is one of the significant challenges in sedimentology. Sedimentation rates retrieved from vertical sections are strongly timescale dependent, which means that we cannot use empirical rate data derived from vertical sections in modern environments to interpret the temporal structure of ancient sedimentary deposits. We use the Lower to Middle Campanian Blackhawk Formation deposits in eastern Utah and western Colorado as a natural laboratory to test a source-to-sink methodology circumventing this timescale dependence by relating modern progradation rates to the deltaic shoreline progradation of ancient siliciclastic rocks. Our objective is to quantify how much time is needed to account for the observed cumulative deltaic shoreline progradation recorded by the shallow-marine sandstone bodies of the Blackhawk Formation in terms of progradation rates derived from comparable modern deltaic systems. By making the simplifying assumption that the Blackhawk Formation rocks were deposited along a linear coastline that only grew by aggradation and progradation, it is possible to argue that the stratigraphic completeness of two-dimensional dip-oriented stratigraphic cross-sections through these deposits should be high. Furthermore, we hypothesise that delta progradation estimates capture a significant portion of the biostratigraphically and radiometrically constrained duration of the succession. By comparing the recorded progradation with modern progradation rates, we estimate that we need ca. 20% (median value, with minimum and maximum estimates of 2% and 300%) of the time available from biostratigraphic and radiometric dating to account for the progradation recorded by the sedimentary deposits. This indicates that long-term progradation rates averaged over the entire duration of the Blackhawk Formation were only a factor of five times slower than the modern progradation rates derived from observations over periods that are five to six orders of magnitude shorter. We conclude that a significant amount of time is represented by prograding deltaic shoreline deposits and that by considering the cumulative shoreline progradation, we could limit the effects of timescale dependence on the rate estimates used in our analysis

    Geochemistry and petrology of palaeocene coals from Spitzbergen — Part 2: Maturity variations and implications for local and regional burial models

    Get PDF
    The Central Tertiary Basin is an uplifted part of the North Barents Shelf and should be an ideal location to understand the thermal history, maximum burial depth and overburden thickness in this petroleum-rich area. Efforts to quantify the thermal history of the region have been hampered by reports of hyper-thermal conditions, maturity gaps and maturity inversions in the Tertiary vitrinite reflectance (Ro) record. This has been attributed to thermal insulation effects, vitrinite reflectance due to bitumen impregnation and later Tertiary volcanism. Through the use of Ro, organic maturity parameters, 13C NMR and Rock–Eval pyrolysis, this study aims to explain the unusual maturity effects observed and the implications for burial models. Within single seams, Ro % ranges from 0.5 to 0.78 with increasingly bimodal distribution up-seam. Analysis of coal aromaticity and the results of Rock–Eval analysis confirm that maturity gaps and inversions only occur where the vitrinite reflectance has been suppressed by high bitumen content (300–400 mg/g coal). Samples with the lowest hydrogen index values (< 250 mg HC / TOC) provide the most accurate estimates of the vitrinite reflectance. Results indicate maximum burial temperatures of 120 °C in the basin centre and 100 °C at the basin margins with a hyper-thermal gradient of approximately 50 °C/km. This gradient implies a total overburden of 2 km of which 1 km has been lost. Maximum burial depth and total erosional sediment load to the Barents Shelf are therefore at the lower end of current estimates

    A quasi-synoptic survey of the thermocline circulation and water mass distribution within the Canary Basin

    Get PDF
    Shipboard hydrographic measurements and moored current meters are used to infer both the large-scale and mesoscale water mass distribution and features of the general circulation in the Canary Basin. We found a convoluted current system dominated by the time-dependent meandering of the eastward flowing Azores Current and the formation of mesoscale eddies. At middepths, several distinctly different water masses are identified: Subpolar Mode and Labrador Sea Water are centered in the northwest, Subantarctic Intermediate Water is centered in the southeast, and the saltier, warmer Mediterranean tongue lies between them. Mesoscale structures of these water masses suggest the presence of middepth meanders and detached eddies which may be caused by fluctuations of the Azores Current

    Long-term Observations Reveal Environmental Conditions and Food Supply Mechanisms at an Arctic Deep-Sea Sponge Ground

    Get PDF
    Deep-sea sponge grounds are hotspots of benthic biomass and diversity. To date, very limited data exist on the range of environmental conditions in areas containing deep-sea sponge grounds and which factors are driving their distribution and sustenance. We investigated oceanographic conditions at a deep-sea sponge ground located on an Arctic Mid-Ocean Ridge seamount. Hydrodynamic measurements were performed along Conductivity-Temperature-Depth transects, and a lander was deployed within the sponge ground that recorded near-bottom physical properties as well as vertical fluxes of organic matter over an annual cycle. The data demonstrate that the sponge ground is found at water temperatures of −0.5°C to 1°C and is situated at the interface between two water masses at only 0.7° equatorward of the turning point latitude of semi-diurnal lunar internal tides. Internal waves supported by vertical density stratification interact with the seamount topography and produce turbulent mixing as well as resuspension of organic matter with temporarily very high current speeds up to 0.72 m s−1. The vertical movement of the water column delivers food and nutrients from water layers above and below toward the sponge ground. Highest organic carbon flux was observed during the summer phytoplankton bloom period, providing fresh organic matter from the surface. The flux of fresh organic matter is unlikely to sustain the carbon demand of this ecosystem. Therefore, the availability of bacteria, nutrients, and dissolved and particulate matter, delivered by tidally forced internal wave turbulence and transport by horizontal mean flows, likely plays an important role in meeting ecosystem-level food requirements

    The western North Atlantic shelfbreak current system in summer

    Get PDF
    Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2509-2533, doi:10.1175/JPO3123.1.Twelve years of historical hydrographic data, spanning the period 1990–2001, are analyzed to examine the along-stream evolution of the western North Atlantic Ocean shelfbreak front and current, following its path between the west coast of Greenland and the Middle Atlantic Bight. Over 700 synoptic sections are used to construct a mean three-dimensional description of the summer shelfbreak front and to quantify the along-stream evolution in properties, including frontal strength and grounding position. Results show that there are actually two fronts in the northern part of the domain—a shallow front located near the shelf break and a deeper front centered in the core of Irminger Water over the upper slope. The properties of the deeper Irminger front erode gradually to the south, and the front disappears entirely near the Grand Banks of Newfoundland. The shallow shelfbreak front is identifiable throughout the domain, and its properties exhibit large variations from north to south, with the largest changes occurring near the Tail of the Grand Banks. Despite these structural changes, and large variations in topography, the foot of the shelfbreak front remains within 20 km of the shelf break. The hydrographic sections are also used to examine the evolution of the baroclinic velocity field and its associated volume transport. The baroclinic velocity structure consists of a single velocity core that is stronger and penetrates deeper where the Irminger front is present. The baroclinic volume transport decreases by equal amounts at the southern end of the Labrador Shelf and at the Tail of the Grand Banks. Overall, the results suggest that the Grand Banks is a geographically critical location in the North Atlantic shelfbreak system.This work was supported by the National Science Foundation under Grants OCE00- 95261 (PF) and OCE-0450658 (RP)
    corecore