180 research outputs found

    Genes influencing milk production traits predominantly affect one of four biological pathways

    Get PDF
    In this study we introduce a method that accounts for false positive and false negative results in attempting to estimate the true proportion of quantitative trait loci that affect two different traits. This method was applied to data from a genome scan that was used to detect QTL for three independent milk production traits, Australian Selection Index (ASI), protein percentage (P%) and fat percentage corrected for protein percentage (F% ā€“ P%). These four different scenarios are attributed to four biological pathways: QTL that (1) increase or decrease total mammary gland production (affecting ASI only); (2) increase or decrease lactose synthesis resulting in the volume of milk being changed but without a change in protein or fat yield (affecting P% only); (3) increase or decrease protein synthesis while milk volume remains relatively constant (affecting ASI and P% in the same direction); (4) increase or decrease fat synthesis while the volume of milk remains relatively constant (affecting F% ā€“ P% only). The results indicate that of the positions that detected a gene, most affected one trait and not the others, though a small proportion (2.8%) affected ASI and P% in the same direction

    An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy

    Get PDF
    The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides

    Soil management and engineering for blue-green infrastructure

    Get PDF
    As urban areas continue to expand, the value of urban blue-green infrastructure (BGI) for increasing the social, environmental and economic sustainability of cities is increasingly recognised. However, there remains an inherent lack of knowledge and awareness around the fundamental contribution that soils make to the functioning of ecosystems within urban BGI. Urban landscapes are a nexus of environmental, engineered and socio-economic factors, which combine to create multifunctional spaces for people to live and work, all underpinned by the soil beneath us. In this chapter, we first outline the characteristics of urban soils and their importance for providing a range of beneficial ecosystem services, such as food production, flood mitigation, carbon storage and opportunities for recreation. We then highlight the key challenges and opportunities around the management and creation of soils within urban BGI. We conclude by emphasising the urgent need for better recognition of urban soils within planning policy and setting out a series of land-use specific management recommendations that will better enable urban soils to support the delivery of ecosystem services and, ultimately, enhance human health and wellbeing

    Harnessing gene expression to identify the genetic basis of drug resistance

    Get PDF
    The advent of cost-effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug-free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel geneā€“drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug

    Achieving population-level immunity to rabies in free-roaming dogs in Africa and Asia.

    Get PDF
    Canine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least two years to ensure communities are protected from rabies. These findings support annual mass vaccination campaigns as the most effective means to control canine rabies.This study was funded by the International Fund for Animal Welfare (IFAW) http://www.ifaw.org/united-kingdom and the World Society for the Protection of Animals (WSPA) http://www.wspa.org.uk/, with support from the Charles Slater Fund and Jowett Fund. OR is supported by the Royal Society, and JLNW the Alborada Trust. JLNW, OR and ARF receive support from the Research and Policy for Infectious Disease Dynamics Program of the Science and Technology Directorate, Department of Homeland Security, Fogarty International Centre, National Institute of Health. DLH and ARF are supported by the U.K. Department for the Environment, Food and Rural Affairs project number SEV3500. TJM is supported by Biotechnology and Biological Sciences Research Council grant number BB/I012192/1.This is the final version. It was first published by PLOS in PLOS Neglected Tropical Diseases at http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003160
    • ā€¦
    corecore