1,118 research outputs found

    Far-off-equilibrium expansion trajectories in the QCD phase diagram

    Full text link
    We consider the hydrodynamic evolution of a quark-gluon gas with non-zero quark masses and net baryon number in its phase diagram. For far-off-equilibrium initial conditions the expansion trajectories appear to violate simple rules based on the second law of thermodynamics that were previously established for ideal or weakly dissipative fluids. For Bjorken flow we present a detailed analysis within kinetic theory that provides a full microscopic understanding of these macroscopic phenomena and establishes their thermodynamic consistency. We point out that, for certain far-off-equilibrium initial conditions, the well-known phenomenon of "viscous heating" turns into "viscous cooling" where, driven by dissipative effects, the temperature decreases faster than in adiabatic expansion.Comment: 25 pages, 14 figures (manuscript now in PRC format, added references

    Far-off-equilibrium early-stage dynamics in high-energy nuclear collisions

    Full text link
    We explore the far-off-equilibrium aspects of the (1+1)-dimensional early-stage evolution of a weakly-coupled quark-gluon plasma using kinetic theory and hydrodynamics. For a large set of far-off-equilibrium initial conditions the system exhibits a peculiar phenomenon where its total equilibrium entropy decreases with time. Using a non-equilibrium definition of entropy based on Boltzmann's H-function, we demonstrate how this apparently anomalous behavior is consistent with the second law of thermodynamics. We also use the H-function to formulate `maximum-entropy' hydrodynamics, a far-off-equilibrium macroscopic theory that can describe both free-streaming and near-equilibrium regimes of quark-gluon plasma in a single framework.Comment: Contribution to Quark Matter 2023 (4 pages, 4 figures

    Fluid dynamics from the Boltzmann equation using a maximum entropy distribution

    Full text link
    Using the recently developed ``Maximum Entropy'' (or ``least biased'') distribution function to truncate the moment hierarchy arising from kinetic theory, we formulate a far-from-equilibrium macroscopic theory that provides the possibility of describing both free-streaming and hydrodynamic regimes of heavy-ion collisions within a single framework. Unlike traditional hydrodynamic theories that include viscous corrections to finite order, the present formulation incorporates contributions to all orders in shear and bulk inverse Reynolds numbers, allowing it to handle large dissipative fluxes. By considering flow profiles relevant for heavy-ion collisions (Bjorken and Gubser flows), we demonstrate that the present approach provides excellent agreement with underlying kinetic theory throughout the fluid's evolution and, especially, in far-off-equilibrium regimes where traditional hydrodynamics breaks down.Comment: 29 pages, 19 figure

    Comparison of the Low-Cost Sun Sensors of the SOURCE and EIVE CubeSats

    Get PDF
    Sun sensors are commonly used attitude determination equipment which measure a spacecraft’s attitude relative to the sun. Multiple types of low-cost sun sensors were developed for the SOURCE and EIVE CubeSats. The SOURCE sun sensors consist of single photodiodes which are placed in a one-sensor-per-face as well as a pyramid arrangement. EIVE employs digital vector sun sensors based on quad-pin photodiodes. The SOURCE sun sensors in the one-sensor-per-face arrangement archive an accuracy of \u3c10° while the pyramid arrangement accomplishes an accuracy of \u3c7.5° without and \u3c5° with calibration. EIVE’s vector sun sensors offer an raw accuracy of 3°±5°. Multiple calibration approaches are presented with the best results leading to an accuracy of 0.7±3°. A direct comparison between the SOURCE and EIVE sensor types and configurations can be drawn since the same test bench was used to measure all sensors. The objective of this paper is to present and compare the different sun sensor concepts and their results

    D=2 gluon condensate and QCD propagators at finite temperature

    Full text link
    We calculate the dimension two gluon condensate contribution to quark, gluon and ghost propagators at finite temperature.Comment: Minor modifications. Accepted in PL

    Spin systems with dimerized ground states

    Full text link
    In view of the numerous examples in the literature it is attempted to outline a theory of Heisenberg spin systems possessing dimerized ground states (``DGS systems") which comprises all known examples. Whereas classical DGS systems can be completely characterized, it was only possible to provide necessary or sufficient conditions for the quantum case. First, for all DGS systems the interaction between the dimers must be balanced in a certain sense. Moreover, one can identify four special classes of DGS systems: (i) Uniform pyramids, (ii) systems close to isolated dimer systems, (iii) classical DGS systems, and (iv), in the case of s=1/2s=1/2, systems of two dimers satisfying four inequalities. Geometrically, the set of all DGS systems may be visualized as a convex cone in the linear space of all exchange constants. Hence one can generate new examples of DGS systems by positive linear combinations of examples from the above four classes.Comment: With corrections of proposition 4 and other minor change

    Erratum to: ‘Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers’

    Get PDF
    Background: Acute kidney injury (AKI) is a common complication following transcatheter aortic valve implantation (TAVI) leading to increased mortality and morbidity. Urinary G1 cell cycle arrest proteins TIMP-2 and IGFBP7 have recently been suggested as sensitive biomarkers for early detection of AKI in critically ill patients. However, the precise role of urinary TIMP-2 and IGFBP7 in patients undergoing TAVI is unknown. Methods: In a prospective observational trial, 40 patients undergoing TAVI (either transaortic or transapical) were enrolled. Serial measurements of TIMP-2 and IGFBP7 were performed in the early post interventional course. The primary clinical endpoint was the occurrence of AKI stage 2/3 according to the KDIGO classification. Results: Now we show, that ROC analyses of [TIMP-2]*[IGFBP7] on day one after TAVI reveals a sensitivity of 100 % and a specificity of 90 % for predicting AKI 2/3 (AUC 0.971, 95 % CI 0.914-1.0, SE 0.0299, p = 0.001, cut-off 1.03). In contrast, preoperative and postoperative serum creatinine levels as well as glomerular filtration rate (GFR) and perioperative change in GFR did not show any association with the development of AKI. Furthermore, [TIMP2]*[IGFBP7] remained stable in patients with AKI = 1, but its levels increased significantly as early as 24 h after TAVI in patients who developed AKI 2/3 in the further course (4.77 +/- 3.21 vs. 0.48 +/- 0.68, p = 0.022). Mean patients age was 81.2 +/- 5.6 years, 16 patients were male (40.0 %). 35 patients underwent transapical and five patients transaortic TAVI. 15 patients (37.5 %) developed any kind of AKI;eight patients (20 %) met the primary endpoint and seven patients required renal replacement therapy (RRT) within 72 h after surgery. Conclusion: Early elevation of urinary cell cycle arrest biomarkers after TAVI is associated with the development of postoperative AKI. [TIMP-2]*[ IGFBP7] provides an excellent diagnostic accuracy in the prediction of AKI that is superior to that of serum creatinine

    Non-perturbative thermal flows and resummations

    Get PDF
    We construct a functional renormalisation group for thermal fluctuations. Thermal resummations are naturally built in, and the infrared problem of thermal fluctuations is well under control. The viability of the approach is exemplified for thermal scalar field theories. In gauge theories the present setting allows for the construction of a gauge-invariant thermal renormalisation group.Comment: 16 pages, eq (38) added to match published versio

    Hadron Production in Ultra-relativistic Nuclear Collisions: Quarkyonic Matter and a Triple Point in the Phase Diagram of QCD

    Get PDF
    We argue that features of hadron production in relativistic nuclear collisions, mainly at CERN-SPS energies, may be explained by the existence of three forms of matter: Hadronic Matter, Quarkyonic Matter, and a Quark-Gluon Plasma. We suggest that these meet at a triple point in the QCD phase diagram. Some of the features explained, both qualitatively and semi-quantitatively, include the curve for the decoupling of chemical equilibrium, along with the non-monotonic behavior of strange particle multiplicity ratios at center of mass energies near 10 GeV. If the transition(s) between the three phases are merely crossover(s), the triple point is only approximate.Comment: 28 pages, 9 figures; submitted to Nucl. Phys. A; v2 to eliminate obsolete figs. inadvertently attached at the end of the paper; v3: final version accepted for publicatio

    Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells

    Get PDF
    © 2018, American Society for Clinical Investigation. This article has been published in final form at https://doi.org/10.1172/JCI120612First-generation immune checkpoint inhibitors, including anti-CTLA-4 and anti-programmed death 1 (anti-PD-1) antibodies, have led to major clinical progress, yet resistance frequently leads to treatment failure. Thus, new targets acting on T cells are needed. CD33-related sialic acid-binding immunoglobulin-like lectins (Siglecs) are pattern-recognition immune receptors binding to a range of sialoglycan ligands, which appear to function as self-associated molecular patterns (SAMPs) that suppress autoimmune responses. Siglecs are expressed at very low levels on normal T cells, and these receptors were not until recently considered as interesting targets on T cells for cancer immunotherapy. Here, we show an upregulation of Siglecs, including Siglec-9, on tumor-infiltrating T cells from non-small cell lung cancer (NSCLC), colorectal, and ovarian cancer patients. Siglec-9-expressing T cells coexpressed several inhibitory receptors, including PD-1. Targeting of the sialoglycan-SAMP/Siglec pathway in vitro and in vivo resulted in increased anticancer immunity. T cell expression of Siglec-9 in NSCLC patients correlated with reduced survival, and Siglec-9 polymorphisms showed association with the risk of developing lung and colorectal cancer. Our data identify the sialoglycan-SAMP/Siglec pathway as a potential target for improving T cell activation for immunotherapy.Peer reviewe
    corecore