26 research outputs found

    Accurate localization of brain activity in presurgical fMRI by structure adaptive smoothing

    Get PDF
    An important problem of the analysis of fMRI experiments is to achieve some noise reduction of the data without blurring the shape of the activation areas. As a novel solution to this problem, the Propagation-Separation approach (PS), a structure adaptive smoothing method, has been proposed recently. PS adapts to different shapes of activation areas by generating a spatial structure corresponding to similarities and differences between time series in adjacent locations. In this paper we demonstrate how this method results in more accurate localization of brain activity. First, it is shown in numerical simulations that PS is superior over Gaussian smoothing with respect to the accurate description of the shape of activation clusters and and results in less false detections. Second, in a study of 37 presurgical planning cases we found that PS and Gaussian smoothing often yield different results, and we present examples showing aspects of the superiority of PS as applied to presurgical planning

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe

    Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future

    No full text
    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes

    A Pilot Study of Quantitative MRI Measurements of Ventricular Volume and Cortical Atrophy for the Differential Diagnosis of Normal Pressure Hydrocephalus

    Get PDF
    Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral atrophy) could be used to more objectively distinguish NPH from normal controls (NC), Alzheimer's (AD), and Parkinson's disease (PD). Volumetric MRIs were obtained prospectively from patients with NPH (n=5), PD (n=5), and NC (5). Additional NC (n=5) and AD patients (n=10) from the ADNI cohort were examined. Although mean ventricular volume was significantly greater in the NPH group than all others, the range of values overlapped those of the AD group. Individuals with NPH could be better distinguished when ventricular volume and total cortical thickness were considered in combination. This pilot study suggests that volumetric MRI measurements hold promise for improving NPH differential diagnosis

    Accurate Localization of Brain Activity in Presurgical fMRI by Structure Adaptive Smoothing

    No full text
    An important problem of the analysis of functional magnetic resonance imaging (fMRI) experiments is to achieve some noise reduction of the data without blurring the shape of the activation areas. As a novel solution to this problem, recently the propagation-separation (PS) approach has been proposed. PS is a structure adaptive smoothing method that adapts to different shapes of activation areas. In this paper, we demonstrate how this method results in a more accurate localization of brain activity. First, it is shown in numerical simulations that PS is superior over Gaussian smoothing with respect to the accurate description of the shape of activation clusters and results in less false detections. Second, in a study of 37 presurgical planning cases we found that PS and Gaussian smoothing often yield different results, and we present examples showing aspects of the superiority of PS as applied to presurgical planning

    Impact of skull base development on endonasal endoscopic surgical corridors

    No full text
    Object. Scarce morphometric data exist on the developing skull base as a corridor for endonasal endoscopic approaches (EEAs). Furthermore, the impact of skull base lesions on its development has not been assessed. The authors describe a novel set of anatomical parameters characterizing the developmental process as well as the utility of these parameters in preoperative planning and a feasibility assessment of EEAs for neurosurgical treatment of skull base lesions in children. Methods. Based on specific MRI sequences in 107 pediatric patients (2-16 years of age) without skull base lesions (referred to here as the normal population), 3 sets of anatomical parameters were analyzed according to age group and sex: drilling distance, restriction sites, and working distance parameters. A separate set of patients undergoing EEAs was analyzed in similar fashion to address the impact of skull base lesions on the developmental process. Results. The volume of the sphenoid sinus significantly increases with age, reaching 6866.4 mm(3) in the 14-16 years age group, and directly correlates with the pneumatization type (r = 0.533, p = 0.0001). The pneumatization process progresses slowly in a temporal-posterior direction, as demonstrated by the growth trend of the sellar width (r = 0.428, p = 0.0001). Nasal restriction sites do not change significantly with age, with little impact on EBAs. The intercarotid distance is significantly different only in the extreme age groups (3.9 mm, p = 0.038), and has an important impact on the transsphenoidal angle and the intracranial dissection limits (r = 0.443, p < 0.0001). The 14.9 degrees transsphenoidal angle at 2-4 years has a 37.6% significant increase in the 11-13 years age group (p = 0.001) and is highly dependent on pneumatization type. Age-dependent differences between working parameters are mostly noted for the extreme age groups, such as the 8.6-mm increase in nare-vomer distance (p = 0.025). The nare-sellar distance is the only parameter with significant differences based on sex. Skull base lesions induce a high degree of variance in skull base measurements, delaying development and decreasing parameter values. Skull base parameters are interdependent. Nare-sellar distance can be used to assess global skull base development because it highly correlates with the intercarotid distance in both the normal population and in patients harboring skull base lesions. Conclusions. Skull base development is a slow, gradual, age-dependent, sex-independent process significantly altering endonasal endoscopic corridors. Preoperative MRI measurements of the pediatric skull base are thus a useful adjunct in choosing the appropriate corridor and in assessing working angles and limits during dissection or reparative surgery. Skull base lesions can significantly impact normal skull base development and age-dependent growth patterns

    Possible axonal regrowth in late recovery from the minimally conscious state

    No full text
    We used diffusion tensor imaging (DTI) to study 2 patients with traumatic brain injury. The first patient recovered reliable expressive language after 19 years in a minimally conscious state (MCS); the second had remained in MCS for 6 years. Comparison of white matter integrity in the patients and 20 normal subjects using histograms of apparent diffusion constants and diffusion anisotropy identified widespread altered diffusivity and decreased anisotropy in the damaged white matter. These findings remained unchanged over an 18-month interval between 2 studies in the first patient. In addition, in this patient, we identified large, bilateral regions of posterior white matter with significantly increased anisotropy that reduced over 18 months. In contrast, notable increases in anisotropy within the midline cerebellar white matter in the second study correlated with marked clinical improvements in motor functions. This finding was further correlated with an increase in resting metabolism measured by PET in this subregion. Aberrant white matter structures were evident in the second patient’s DTI images but were not clinically correlated. We propose that axonal regrowth may underlie these findings and provide a biological mechanism for late recovery. Our results are discussed in the context of recent experimental studies that support this inference
    corecore