12 research outputs found

    Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi‐taxa and multi‐scale approach

    Get PDF
    Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turno-ver of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the en-vironmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size.Location: Temperate forests in five regions across Germany.Methods: In the inter-region analysis, the independent and shared effects of the re-gional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined.Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less disper-sive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physi-ognomy, but the relative importance of the latter increased with increasing trophic position and body size.Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conserva-tion frameworks targeting biodiversity of multiple groups should cover both envi-ronmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy

    The 4Cs of adaptation tracking: consistency, comparability, comprehensiveness, coherency

    Get PDF
    Adaptation tracking seeks to characterize, monitor, and compare general trends in climate change adaptation over time and across nations. Recognized as essential for evaluating adaptation progress, there have been few attempts to develop systematic approaches for tracking adaptation. This is reflected in polarized opinions, contradictory findings, and lack of understanding on the state of adaptation globally. In this paper, we outline key methodological considerations necessary for adaptation tracking research to produce systematic, rigorous, comparable, and usable insights that can capture the current state of adaptation globally, provide the basis for characterizing and evaluating adaptations taking place, facilitate examination of what conditions explain differences in adaptation action across jurisdictions, and can underpin the monitoring of change in adaptation over time. Specifically, we argue that approaches to adaptation tracking need to (i) utilize a consistent and operational conceptualization of adaptation, (ii) focus on comparable units of analysis, (iii) use and develop comprehensive datasets on adaptation action, and (iv) be coherent with our understanding of what constitutes real adaptation. Collectively, these form the 4Cs of adaptation tracking (consistency, comparability, comprehensiveness, and coherency)

    Der Einfluss von Heterogenität in Umweltbedingungen auf Artgemeinschaften

    No full text
    How diversity of life is generated, maintained, and distributed across space and time is the central question of community ecology. Communities are shaped by three assembly processes: (I) dispersal, (II) environ-mental, and (III) interaction filtering. Heterogeneity in environmental conditions can alter these filtering processes, as it increases the available niche space, spatially partitions the resources, but also reduces the effective area available for individual species. Ultimately, heterogeneity thus shapes diversity. However, it is still unclear under which conditions heterogeneity has positive effects on diversity and under which condi-tions it has negative or no effects at all. In my thesis, I investigate how environmental heterogeneity affects the assembly and diversity of diverse species groups and whether these effects are mediated by species traits. In Chapter II, I first examine how much functional traits might inform about environmental filtering pro-cesses. Specifically, I examine to which extent body size and colour lightness, both of which are thought to reflect the species thermal preference, shape the distribution and abundance of two moth families along elevation. The results show, that assemblages of noctuid moths are more strongly driven by abiotic filters (elevation) and thus form distinct patterns in colour lightness and body size, while geometrid moths are driven by biotic filters (habitat availability), and show no decline in body size nor colour lightness along elevation. Thus, one and the same functional trait can have quite different effects on community assembly even between closely related taxonomic groups. In Chapter III, I elucidate how traits shift the relative importance of dispersal and environmental filtering in determining beta diversity between forests. Environmental filtering via forest heterogeneity had on aver-age higher independent effects than dispersal filtering within and among regions, suggesting that forest heterogeneity determines species turnover even at country-wide extents. However, the relative importance of dispersal filtering increased with decreasing dispersal ability of the species group. From the aspects of forest heterogeneity covered, variations in herb or tree species composition had overall stronger influence on the turnover of species than forest physiognomy. Again, this ratio was influenced by species traits, namely trophic position, and body size, which highlights the importance of ecological properties of a taxo-nomic group in community assembly. In Chapter IV, I assess whether such ecological properties ultimately determine the level of heterogeneity which maximizes species richness. Here, I considered several facets of heterogeneity in forests. Though the single facets of heterogeneity affected diverse species groups both in positive and negative ways, we could not identify any generalizable mechanism based on dispersal nor the trophic position of the species group which would dissolve these complex relationships. In Chapter V, I examine the effect of environmental heterogeneity of the diversity of traits itself to evalu-ate, whether the effects of environmental heterogeneity on species richness are truly based on increases in the number of niches. The results revealed that positive effects of heterogeneity on species richness are not necessarily based on an increased number of niches alone, but proposedly also on a spatially partition of resources or sheltering effects. While ecological diversity increased overall, there were also negative trends which indicate filtering effects via heterogeneity. In Chapter VI, I present novel methods in measuring plot-wise heterogeneity of forests across continental scales via Satellites. The study compares the performance of Sentinel-1 and LiDar-derived measurements in depicting forest structures and heterogeneity and to their predictive power in modelling diversity. Senti-nel-1 could match the performance of Lidar and shows high potential to assess free yet detailed infor-mation about forest structures in temporal resolutions for modelling the diversity of species. Overall, my thesis supports the notion that heterogeneity in environmental conditions is an important driv-er of beta-diversity, species richness, and ecological diversity. However, I could not identify any general-izable mechanism which direction and form this effect will have.Eine zentrale Frage in der Ökologie ist es, wie die Diversität von Artgemeinschaften generiert, aufrecht-erhalten, und über Zeit und Raum verteilt wird. Die Zusammensetzung von Artgemeinschaften wird durch drei Prozesse bestimmt, die einzelne Arten herausfiltern: (I) Ausbreitung, sowie (II) Umweltbedin-gungen und (III) Interaktionen mit anderen Arten. Heterogenität in Umweltbedingungen verändert das Zusammenspiel dieser Filterprozesse, da es die Anzahl verfügbarer Nischen erhöht und Ressourcen räum-lich aufteilt, aber auch den für die jeweilige Art verfügbaren Raum reduziert, was schlussendlich die Diver-sität der Artgemeinschaft beeinflusst. Es ist jedoch immer noch unklar, wann Heterogenität die Diversität positiv und wann negativ oder sogar überhaupt nicht beeinflusst. In dieser Dissertation werde ich der Fra-ge nachgehen, wie Heterogenität die Artzusammensetzung und Diversität verschiedenster Artengruppen beeinflusst und ob deren Reaktion auf Heterogenität durch Artmerkmale beeinflusst wird. In Kapitel II untersuche ich zunächst inwieweit funktionale Merkmale den Einfluss von Umweltbedingun-gen auf Arten widerspiegeln. Dazu untersuchte ich den Einfluss von Körpergröße und Helligkeit auf die Verbreitung und Abundanz zweier Nachtfalterfamilien entlang eines Höhengradienten. Es zeigte sich, dass Noctuidae stärker von abiotischen Filterprozessen, d.h. Höhe, betroffen waren und klare Zu- bzw. Ab-nahmen in Körpergröße und Helligkeit entlang der Höhe aufwiesen, während Geometridae eher von bioti-schen Filterprozessen, d.h. der Verfügbarkeit ihres Habitats, beeinflusst wurden und keine Merkmalsmus-ter entlang der Höhe aufwiesen. Entsprechend kann ein- und dasselbe Merkmal selbst innerhalb nah-verwandter Artgruppen unterschiedliche Effekte auf die Zusammensetzung von Arten haben. In Kapitel III erläutere ich, wie funktionelle Merkmale die relative Wichtigkeit von Ausbreitungs- und Umweltfiltern für beta-Diversität verschieben können. Sowohl innerhalb als auch zwischen den untersuch-ten Regionen beeinflusste Heterogenität in Wäldern die beta-Diversität stärker als die räumliche Distanz. Letztere wurde allerdings immer bedeutender, je schlechter die Ausbreitungsfähigkeit der jeweiligen Arten-gruppe war. Wenn die Heterogenität in Wäldern nach floristischen und strukturellen Aspekten aufgeteilt wird, so hatte erstere alles in allem einen stärkeren Einfluss auf Unterschiede zwischen Artgemeinschaften. Bei Artengruppen höheren trophischen Levels und größeren Körperbaus hatten die strukturellen Aspekte jedoch einen stärkeren Einfluss. Diese Ergebnisse verdeutlichen, dass die Artzusammensetzung von be-stimmte Merkmale beeinflusst werden kann. In Kapitel IV untersuche ich ob solche Merkmale das Level an Heterogenität festlegen, an welchen Arten-reichtum am höchsten ist. Dazu betrachtete ich mehrere Aspekte von Heterogenität in Wäldern. Obwohl Heterogenität in diesen Aspekten sowohl positive als auch negative Einfluss auf den Artenreichtum der verschiedensten Artengruppen hatte, konnten wir diese nicht anhand der Ausbreitungsfähigkeit oder des trophischen Levels der Artengruppen ableiten. In Kapitel V untersuche ich schließlich den Effekt von Heterogenität auf die Vielfalt von funktionalen Merkmalen. Dieser Ansatz soll helfen zu evaluieren, ob eventuelle Anstiege in der Artenzahl mit Hetero-genität einem Zuwachs in der Anzahl der ökologischen Nischen zurückzuführen sind. Die Ergebnisse legen nahe, dass ein Anstieg von Artenreichtum nicht dadurch beeinflusst wird, sondern auch durch ande-re Mechanismen wie die räumliche Aufteilung von Ressourcen oder durch die Schaffung von Zufluchts-räumen. Obwohl Heterogenität die ökologische Diversität überwiegend positiv beeinflusste, gab es auch einige negative Reaktionen die darauf hindeuten, dass Heterogenität auch bestimmte Merkmale aus einer Artgemeinschaft herausfiltern kann. In Kapitel VI präsentiere ich neue, Satelliten-gestützte Methoden in der Erfassung von Waldstrukturen. In dieser Studie werden die Eignung von LiDar (Lasergestützte Waldvermessungen aus der Luft) und Senti-nel-1 (Satellitenscan durch Radiowellen) verglichen, Waldstrukturen und deren Heterogenität zu messen sowie verschiedene Diversitäts-indices zu modellieren. Hierbei schnitt Sentinel-1 ähnlich gut ab wie LiDar. Somit zeigt Sentinel-1 großes Potential zukünftige Biodiversitätsaufnahmen zu unterstützen, auch aufgrund der kostenfreie Verfügbarkeit von Daten, deren globalen Abdeckung und hohen zeitlichen Auflösung. Insgesamt unterstützen die Ergebnisse meiner Arbeit die große Bedeutung von Heterogenität, insbesonde-re von Waldstrukturen, für beta-Diversität, Artenreichtum und funktionaler Diversität. Allerdings konnte keine generelle Regel identifiziert werden, nach der sich vorhersagen lassen würde welche genaue Richtung dieser Effekt haben wird

    Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness

    Get PDF
    Previous macroecological studies have suggested that larger and darker insects are favored in cold environments and that the importance of body size and color for the absorption of solar radiation is not limited to diurnal insects. However, whether these effects hold true for local communities and are consistent across taxonomic groups and sampling years remains unexplored. This study examined the variations in body size and color lightness of the two major families of nocturnal moths, Geometridae and Noctuidae, along an elevational gradient of 700 m in Southern Germany. An assemblage-based analysis was performed using community-weighted means and a fourth-corner analysis to test for variations in color and body size among communities as a function of elevation. This was followed by a species-level analysis to test whether species occurrence and abundance along an elevation gradient were related to these traits, after controlling for host plant availability. In both 2007 and 2016, noctuid moth assemblages became larger and darker with increasing elevation, whereas geometrids showed an opposite trend in terms of color lightness and no clear trend in body size. In single species models, the abundance of geometrids, but not of noctuids, was driven by habitat availability. In turn, the abundance of dark-colored noctuids, but not geometrids increased with elevation. While body size and color lightness affect insect physiology and the ability to cope with harsh conditions, divergent trait–environment relationships between both families underline that findings of coarse-scale studies are not necessarily transferable to finer scales. Local abundance and occurrence of noctuids are shaped by morphological traits, whereas that of geometrids are rather shaped by local habitat availability, which can modify their trait–environment-relationship. We discuss potential explanations such as taxon-specific flight characteristics and the effect of microclimatic conditions

    Index of biodiversity potential (IBP) versus direct species monitoring in temperate forests

    No full text
    International audienceEffects of forest management on forest biodiversity have received increasing attention in both research and forestry practice. Despite advances in technology, monitoring of biodiversity remains time and cost-intensive and requires specific taxonomic expertise. In forest management, however, there is increasing interest and need to integrate biodiversity monitoring into forest inventories efficiently to estimate the potential effects of forest management on biodiversity. Forest management systems can differ greatly depending on management goals and the intensity and frequency of the applied silvicultural interventions. To identify management effects on biodiversity, an estimation of biodiversity using forest structural attributes may be a reasonable approach. Forest structure can – compared to conventional species-based monitoring - easily be captured during forest inventories and does not require specific taxonomic expertise. The IBP (Index of Biodiversity Potential) is a composite index aiming to provide practitioners with an efficient tool for estimating biodiversity at the local level. We recorded the IBP on 147 plots in three regions of Germany, where detailed biodiversity monitoring had been conducted. This study quantified the relationship between changes in the IBP scores and changes in species richness for 13 taxonomic groups. To determine this, we analyzed estimated relationships between the IBP and species richness using a count regression model. We found positive estimated relationships with species richness of birds, fungi, true bugs, lichens, and moths in at least 3 of 5 examined forest types. However, for spiders, bats, carabids, necrophagous and saproxylic beetles, either no relationship with the IBP or estimated relationships with only one forest type were found. Changes in scores for the IBP's factors number of vertical layers, large living trees, tree-related microhabitats, and proportion of gaps correlated with changes in the measured species richness in many cases. Even though the IBP is generally not adequate to predict actual presence or precise number of species, it can be utilized to depict a forest stand's potential in terms of species richness. Due to its easy and time-efficient application, it could be a useful proxy used in combination with species-based monitoring approaches

    Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests

    Full text link
    The habitat heterogeneity hypothesis predicts that biodiversity increases with increasing habitat heterogeneity due to greater niche dimensionality. However, recent studies have reported that richness can decrease with high heterogeneity due to stochastic extinctions, creating trade-offs between area and heterogeneity. This suggests that greater complexity in heterogeneity–diversity relationships (HDRs) may exist, with potential for group-specific responses to different facets of heterogeneity that may only be partitioned out by a simultaneous test of HDRs of several species groups and several facets of heterogeneity. Here, we systematically decompose habitat heterogeneity into six major facets on ~500 temperate forest plots across Germany and quantify biodiversity of 12 different species groups, including bats, birds, arthropods, fungi, lichens and plants, representing 2,600 species. Heterogeneity in horizontal and vertical forest structure underpinned most HDRs, followed by plant diversity, deadwood and topographic heterogeneity, but the relative importance varied even within the same trophic level. Among substantial HDRs, 53% increased monotonically, consistent with the classical habitat heterogeneity hypothesis but 21% were hump-shaped, 25% had a monotonically decreasing slope and 1% showed no clear pattern. Overall, we found no evidence of a single generalizable mechanism determining HDR patterns

    Nature 4.0: A networked sensor system for integrated biodiversity monitoring

    No full text
    Zeuss D, Bald L, Gottwald J, et al. Nature 4.0: A networked sensor system for integrated biodiversity monitoring. Global Change Biology. 2024;30(1): e17056.**Abstract** Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade‐off between grain (i.e., the level of detail), extent (i.e., the number of study sites), and temporal repetition. Here, we present an applied and realized networked sensor system for integrated biodiversity monitoring in the Nature 4.0 project as a solution to these challenges, which considers plants and animals not only as targets of investigation, but also as parts of the modular sensor network by carrying sensors. Our networked sensor system consists of three main closely interlinked components with a modular structure: sensors, data transmission, and data storage, which are integrated into pipelines for automated biodiversity monitoring. We present our own real‐world examples of applications, share our experiences in operating them, and provide our collected open data. Our flexible, low‐cost, and open‐source solutions can be applied for monitoring individual and multiple terrestrial plants and animals as well as their interactions. Ultimately, our system can also be applied to area‐wide ecosystem mapping tasks, thereby providing an exemplary cost‐efficient and powerful solution for biodiversity monitoring. Building upon our experiences in the Nature 4.0 project, we identified ten key challenges that need to be addressed to better understand and counteract the ongoing loss of biodiversity using networked sensor systems. To tackle these challenges, interdisciplinary collaboration, additional research, and practical solutions are necessary to enhance the capability and applicability of networked sensor systems for researchers and practitioners, ultimately further helping to ensure the sustainable management of ecosystems and the provision of ecosystem services

    Nature 4.0: A networked sensor system for integrated biodiversity monitoring

    Get PDF
    Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade‐off between grain (i.e., the level of detail), extent (i.e., the number of study sites), and temporal repetition. Here, we present an applied and realized networked sensor system for integrated biodiversity monitoring in the Nature 4.0 project as a solution to these challenges, which considers plants and animals not only as targets of investigation, but also as parts of the modular sensor network by carrying sensors. Our networked sensor system consists of three main closely interlinked components with a modular structure: sensors, data transmission, and data storage, which are integrated into pipelines for automated biodiversity monitoring. We present our own real‐world examples of applications, share our experiences in operating them, and provide our collected open data. Our flexible, low‐cost, and open‐source solutions can be applied for monitoring individual and multiple terrestrial plants and animals as well as their interactions. Ultimately, our system can also be applied to area‐wide ecosystem mapping tasks, thereby providing an exemplary cost‐efficient and powerful solution for biodiversity monitoring. Building upon our experiences in the Nature 4.0 project, we identified ten key challenges that need to be addressed to better understand and counteract the ongoing loss of biodiversity using networked sensor systems. To tackle these challenges, interdisciplinary collaboration, additional research, and practical solutions are necessary to enhance the capability and applicability of networked sensor systems for researchers and practitioners, ultimately further helping to ensure the sustainable management of ecosystems and the provision of ecosystem services

    The Escherichia coli Cell Division Protein and Model Tat Substrate Sufl (FtsP) Localizes to the Septal Ring and Has a Multicopper Oxidase-Like Structure

    Get PDF
    The Escherichia coli protein SufI (FtsP) has recently been proposed to be a component of the cell division apparatus. The SufI protein is also in widespread experimental use as a model substrate in studies of the Tat (twin arginine translocation) protein transport system. We have used SufI-GFP (green fluorescent protein) fusions to show that SufI localizes to the septal ring in the dividing cell. We have also determined the structure of SufI by X-ray crystallography to a resolution of 1.9 Å. SufI is structurally related to the multicopper oxidase superfamily but lacks metal cofactors. The structure of SufI suggests it serves a scaffolding rather than an enzymatic role in the septal ring and reveals regions of the protein likely to be involved in the protein–protein interactions required to assemble SufI at the septal ring
    corecore