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Abstract
Ecosystem functions and services are severely threatened by unprecedented 
global	loss	in	biodiversity.	To	counteract	these	trends,	it	is	essential	to	develop	sys-
tems to monitor changes in biodiversity for planning, evaluating, and implementing 
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1  |  INTRODUC TION

Global change and the resulting unprecedented global biodiversity 
loss	 are	 major	 threats	 to	 human	 wellbeing	 (Steffen	 et	 al.,	 2015).	
With the present warming of about 1°C relative to the preindustrial 
average	(Hoegh-Guldberg	et	al.,	2019),	we	are	already	experiencing	
extreme	weather	events	such	as	 the	 increasing	frequency	of	heat	
waves,	 droughts,	 and	 flooding	 (Allan	 et	 al.,	 2018).	 Consequently,	
comprehensive	efforts	are	required	to	protect	biodiversity	and	its	
associated critical ecosystem functions and services, which are 
threatened	 by	 global	 change	 (Leclère	 et	 al.,	 2020).	 For	 planning	
and implementing biodiversity conservation and mitigation actions 
as well as for evaluating their success, biodiversity monitoring ap-
proaches	 fall	 under	 three	 different	 categories	 (Eyre	 et	 al.,	 2011; 
Sparrow	 et	 al.,	 2020):	 (1)	 Targeted monitoring based on detailed 
field observations across a limited number of study sites in order 
to	 close	 research	gaps	 related	 to	 individual	or	population-specific	
cause-and-effect	 relationships;	 (2)	 Surveillance monitoring based 
on more general field studies across many sites, over larger areas, 
and	including	multi-annual	repetitions	in	order	to	observe	changes	
of	populations	or	communities;	and	 (3)	Landscape monitoring for a 

wall-to-wall	mapping	of	environmental	changes	on	a	community	to	
ecosystem level.

All	monitoring	approaches	 face	a	 trade-off	between	grain	 (i.e.,	
the	level	of	detail),	extent	(i.e.,	the	number	of	study	sites),	and	tempo-
ral	repetition.	A	solution	to	this	challenge	is	often	sought	in	remote	
sensing	data.	For	example,	Pettorelli	et	al.	(2016)	proposed	a	set	of	
Satellite	Remote	Sensing	Essential	Biodiversity	Variables	(SRS-EBVs)	
for	 substituting	 field	 observations.	 Stating	 that	 biodiversity	 mea-
sures, such as ecosystem structure, fractional vegetation cover, leaf 
area	index,	or	vegetation	phenology	can	be	derived	using	data	from	
global	space	programs	like	NASA's	Earth	Observing	System,	the	EU's	
Copernicus	program,	or	the	recently	launched	German	EnMAP	sat-
ellite.	However,	SRS-EBVs	all	depend	on	the	spectral	properties	of	
larger	vegetation	or	landscape	features.	Consequently,	more	specific	
biodiversity	measures	such	as	species'	populations,	species'	traits,	or	
the community composition of plants and animals are more difficult 
to monitor as they are not directly related to radiative transfer.

In	order	to	monitor	and	map	indirect	biodiversity	measures,	ma-
chine learning modelling approaches are potential solutions, but they 
depend	on	ground	truth	data	for	training	and	testing.	Unfortunately,	
the targeted and surveillance monitoring approaches cannot provide 
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conservation	and	mitigation	actions.	However,	the	implementation	of	monitoring	sys-
tems	suffers	from	a	trade-off	between	grain	(i.e.,	the	level	of	detail),	extent	(i.e.,	the	
number	of	study	sites),	and	temporal	repetition.	Here,	we	present	an	applied	and	real-
ized	networked	sensor	system	for	integrated	biodiversity	monitoring	in	the	Nature	4.0	
project as a solution to these challenges, which considers plants and animals not only 
as	targets	of	investigation,	but	also	as	parts	of	the	modular	sensor	network	by	carry-
ing	sensors.	Our	networked	sensor	system	consists	of	three	main	closely	interlinked	
components with a modular structure: sensors, data transmission, and data storage, 
which are integrated into pipelines for automated biodiversity monitoring. We pre-
sent	our	own	real-world	examples	of	applications,	share	our	experiences	in	operating	
them,	and	provide	our	collected	open	data.	Our	flexible,	low-cost,	and	open-source	
solutions can be applied for monitoring individual and multiple terrestrial plants and 
animals	 as	well	 as	 their	 interactions.	Ultimately,	 our	 system	can	also	be	 applied	 to	
area-wide	ecosystem	mapping	 tasks,	 thereby	providing	an	exemplary	cost-efficient	
and	powerful	solution	for	biodiversity	monitoring.	Building	upon	our	experiences	in	
the	Nature	4.0	project,	we	identified	ten	key	challenges	that	need	to	be	addressed	to	
better	understand	and	counteract	the	ongoing	loss	of	biodiversity	using	networked	
sensor	systems.	To	tackle	these	challenges,	interdisciplinary	collaboration,	additional	
research, and practical solutions are necessary to enhance the capability and applica-
bility	of	networked	sensor	systems	for	researchers	and	practitioners,	ultimately	fur-
ther helping to ensure the sustainable management of ecosystems and the provision 
of ecosystem services.
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these	data	due	to	the	aforementioned	trade-off	between	grain,	ex-
tent, and temporal repetition of the observations, hence these are 
not suitable for closing the systematic biodiversity monitoring gap. 
Thus,	more	integrated	monitoring	systems	are	needed.

Networked	sensor	systems	have	the	potential	to	close	the	sys-
tematic monitoring gap between field observations of biodiversity 
measures	 and	 wall-to-wall	 remote	 sensing	 mappings.	 They	 allow	
practitioners	to	realize	a	dense	observation	network	with	biodiver-
sity	status	 information	 in	near	 real-time,	which	would	not	be	pos-
sible	with	 field	 observations	 alone.	 In	 addition,	 networked	 sensor	
systems provide the data needed for training and testing machine 
learning models in conjunction with remote sensing data.

There	have	been	considerable	efforts	 in	recent	years	to	estab-
lish	 and	operate	networked	 sensor	 systems	 for	biodiversity	moni-
toring	 from	the	 first	vision	of	 “sensing	biodiversity”	 (Turner,	2014)	
towards the idea of fully automated global biodiversity monitoring 
(Besson	et	al.,	2022; Bohan et al., 2017;	Steenweg	et	al.,	2017).	For	
example,	 Sethi	 et	 al.	 (2018)	 introduced	 an	 open-source	 low-cost	
modular	device	for	long-term	continuous	camera	and	audio	record-
ings,	and	Wägele	et	al.	(2022)	presented	a	prototype	of	automated	
multisensor	stations	for	monitoring	species	diversity	(for	reviews	of	
biodiversity	monitoring	technologies,	see	Allan	et	al.,	2018; Besson 
et al., 2022;	Lahoz-Monfort	&	Magrath,	2021).	However,	there	is	still	
a pressing need to combine and integrate various biodiversity mon-
itoring	technologies	for	the	automated	monitoring	of	multi-species	
systems under real-world conditions, to proceed from an initial vision 
to	a	practical	realization,	which	can	have	a	significant	impact	on	the	
conservation of biodiversity, and ultimately secure ecosystem func-
tions and services.

2  |  THE NATURE 4.0 PROJEC T

Here,	 we	 present	 the	 achievements	 of	 practically	 realizing	 a	 net-
worked	 sensor	 system	 for	 integrated	 biodiversity	 monitoring	 in	
the	 Nature	 4.0	 project.	 The	 research	 and	 teaching	 forest	 of	 the	
University	 of	 Marburg	 in	 Germany—the	 Marburg	 Open	 Forest—
served as the primary testbed for the development of our net-
worked	sensor	system.

In	the	Nature	4.0	project,	we	propose	a	change	 in	perspective	
that does not consider plants and animals to be mere variables for 
monitoring,	but	which	utilizes	them	as	parts	of	a	modular	monitoring	
infrastructure.	The	Nature	4.0	networked	sensor	system	comprises	
three main technical components with a modular structure: sensors, 
data	 transmission,	 and	 data	 storage	 (Figure 1).	We	present	 exem-
plary applications for biodiversity monitoring using data obtained in 
the	Nature	4.0	project	with	static	and	mobile	sensors.

2.1  |  Sensors and their applications

All	sensors	of	the	Nature	4.0	network	are	modular	and	can	be	omit-
ted,	expanded,	or	adapted	as	needed.	The	static	and	mobile	sensors	

facilitate monitoring without permanent supervision by researchers 
and	 practitioners,	 are	 intentionally	 inexpensive,	 and	 largely	 open-
source.	As	open	science	is	a	core	theme	in	the	Nature	4.0	project,	all	
of the collected data and computer code is available in online data-
bases	or	from	the	authors	upon	request.

2.1.1  |  Tracking

tRackIT: An open-source radio tracking system for bats and small 
animals
Bats	represent	an	ecologically	significant	taxonomic	group	as	they	
are globally significant to maintain healthy ecosystem function-
ing	through	pollination	and	dispersal	of	seeds	(Kunz	et	al.,	2011).	
Despite	their	important	contributions	to	human	wellbeing,	knowl-
edge of their behaviour is limited, especially in comparison to 
larger-bodied	mammals	 and	 birds	 (Frick	 et	 al.,	2020).	Direct	 ob-
servation	of	bats	is	hampered	by	their	particularly	small	body	size,	
fast	and	abrupt	movements,	and	nocturnal	lifestyle.	In	traditional	
conservation monitoring approaches, bats are often studied using 
manual	radio	tracking	(Naďo	et	al.,	2019),	which	can	be	inefficient	
due	to	time	requirements	and	the	high	cost	of	the	specialized	la-
bour	required.

To	reduce	the	amount	of	manual	labour	required	to	track	bats,	
we	developed	an	open-source	system	for	reliable	automatic	radio	
tracking	of	 (small)	 animals	 in	 situ	 (tRackIT	 Systems;	 https://	track	
it. systems; Gottwald et al., 2019;	 Höchst	 et	 al.,	 2021).	 tRackIT 
acquires,	 stores,	 analyses,	 and	 transmits	 captured	very	high	 fre-
quency	 (VHF)	signals	and	their	descriptive	features,	to	carry	out	
activities such as calculation of the bearing of signals emitted by 
VHF	 radio	 tags	 attached	 to	 animals	 or	 the	 classification	 of	 ani-
mal	activity	(Gottwald	et	al.,	2022).	Tracking	data	were	stored	in	
an	 influx	 database	 (InfluxDB,	 https://	www.	influ	xdata.	com),	 with	
associated	metadata	being	stored	 in	a	MySQL	database	 (https:// 
www.	mysql.	com).

Furthermore,	 to	 overcome	 the	 limitations	 of	 traditional	 mon-
itoring methods, such as low capture rates of small animals on 
camera	 traps,	we	 developed	 a	more	 flexible	multi-sensor	 solution	
consisting	of	off-the-shelf	consumer	electronics	(BatRack; Gottwald 
et al., 2021; https://	natur	e40.	github.	io/	BatRa	ck/	; Figure 2).	BatRack 
is	a	multi-sensor	solution	that	combines	the	individual	methods	for	
monitoring	of	bats,	consisting	of	automatic	VHF	radio	 tracking,	as	
well as audio and video recording combined in a single platform. 
Each	sensor	can	be	used	as	a	trigger	for	the	other.	Using	these	meth-
ods in combination led to >90% detection rates in camera record-
ings	when	the	echolocation	calls	of	bats	were	used	as	a	trigger.	The	
use of multiple sensors also facilitates the detection of individuals 
in	videos,	since	VHF	signal	patterns	can	be	matched	with	the	video	
recordings.	Thus,	BatRack facilitates detailed observations of the be-
haviour	of	individual	bats	over	long	durations.	Visual	behavioural	ob-
servations	can	be	linked	to	vocalization	and	to	VHF	signal	patterns,	
which enables the training of machine learning classifiers that auto-
matically	detect	behavioural	states	in	sound	recordings	and	tracking	

https://trackit.systems
https://trackit.systems
https://www.influxdata.com
https://www.mysql.com
https://www.mysql.com
https://nature40.github.io/BatRack/
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data.	Linking	the	use	of	space	to	the	behaviour	of	individuals	helps	
to better assess the ecological function of habitats and facilitates 
targeted conservation measures.

Animal behaviour at local scales
Knowledge	about	the	activity	periods	of	animals	throughout	the	day	
provides important ecological insights into their responses and ad-
aptations to the environment, foraging strategies, energetics, and 
interactions	with	other	 individuals	or	species	 (Torney	et	al.,	2021).	
However,	there	are	no	available	methods	that	track	both	the	activ-
ity	and	habitat	use	of	small	taxa	in	the	wild,	particularly	in	areas	of	
dense	vegetation	such	as	forests.	Within	the	Nature	4.0	project,	we	
were able to partially overcome this limitation.

Subject	 tracking	 in	 forested	 environments	 remains	 challeng-
ing.	However,	we	can	now	measure	activity	at	high	temporal	res-
olution	 by	 using	 our	 automated	 radio	 tracking	 system	 (BatRack 
and tRackIT)	 in	 combination	 with	 a	 machine	 learning	 approach	
that allows us to distinguish when individuals are active or at rest 
(Gottwald	et	al.,	2022).	Our	approach	offers	various	novel	oppor-
tunities to investigate species interactions in forest ecosystems 
by	providing	 fine-scale	 insights	 into	 the	activity	patterns	of	 ani-
mals	such	as	bats	and	songbirds.	For	instance,	we	are	now	able	to	
assess	 the	 extent	 to	which	 forest-dwelling	bats	 and	 forest	 birds	
overlap	in	the	timing	and	intensity	of	their	daily	activity	(Gottwald	
et al., 2022),	 and	 to	 explore	 group	 decision	making	mechanisms	

in the wild such as bat roost switching and associated swarming 
behaviour.

The	activity	 classification	 in	 the	Nature	4.0	project	was	possi-
ble with high accuracy and at high temporal resolution, although the 
spatial	resolution	and	coverage	of	the	VHF	tracking	data	is	depen-
dent	on	the	positioning	of	the	station	network	and	is	influenced	by	
the	surrounding	landscape.	With	a	median	localization	error	of	ap-
proximately	40 m	in	forested	and	hilly	terrain,	the	spatial	resolution	
is	suitable	for	many	future	research	questions.

In	2022,	VHF	tracking	of	birds	and	bats	was	complemented	by	
conventional	GPS	tracking	of	racoons,	an	invasive	predator	species	
(Figure 3).	Combined	with	fine-scale	habitat	and	weather	monitor-
ing,	 this	 multi-species	 tracking	 has	 the	 potential	 to	 provide	 new	
insights into the spatiotemporal interactions of species with their 
environment.

Birds at larger scales
Birds are highly mobile and many species, particularly migratory 
ones,	inhabit	larger	areas	throughout	the	year	(Newton,	2008).	As	a	
consequence,	local	tracking	solutions	like	tRackIT will often be insuf-
ficient	to	cover	their	movement	over	larger	scales.	Today,	biologging	
technologies facilitate the investigation of animal movements with 
few	of	the	limitations	imposed	by	the	spatial	scale,	long-distance	mi-
gration,	animal's	visibility,	roughness	of	the	terrain,	or	remoteness	of	
the	locations	(Brown	et	al.,	2013;	Jetz	et	al.,	2022).	After	the	animal	

F I G U R E  1 The	Nature	4.0	project.	The	core	of	the	Nature	4.0	project	is	the	networked	sensor	system,	which	comprises	three	main	
components:	sensors,	data	transmission,	and	data	storage.	These	components	of	the	sensor	network	are	modular	and	adjustable	depending	
on	the	biodiversity	element	in	focus.	Readily	accessible	open-source	databases	were	developed	specifically	to	address	each	application's	
data	storage	requirements,	and	facilitate	data	transfer	to	other	elements	of	the	network	and	wider	public.	The	public	is	also	integrated	via	
the	SENSO-Trail	(Science	Education	and	Natural	System	Observation),	with	guided	tours,	school	fieldtrips,	and	online	open	educational	
resources.	The	modular	design	of	the	Nature	4.0	project	allows	for	both	targeted	and	surveillance	monitoring	of	biodiversity,	and	can,	in	
combination	with	data	upscaling	methods,	be	used	for	seamless	area-wide	biodiversity	mapping	in	near	real-time,	with	a	range	of	potential	
applications.

F I G U R E  2 BatRack. BatRack	is	a	multi-sensor	monitoring	solution	that	combines	individual	methods	for	the	monitoring	of	bats,	
consisting	of	automatic	VHF	radio	tracking,	as	well	as	audio	and	video	recording	combined	in	a	single	platform	(a).	Each	sensor	can	be	used	
as a trigger for the other, thereby strongly improving detection rates. BatRack allows researchers to efficiently collect data on species 
occurrences	at	a	very	high	spatiotemporal	resolution	and	can	reliably	operate	in	various	environments	(a–c).	Photos:	P.	Lampe	(a),	J.	
Gottwald	(b),	V.	Salewski	(c).
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has been tagged, biologging technologies also allow the investiga-
tion of animal behaviour without the disturbance introduced by the 
presence	of	an	observer	(Shepard	et	al.,	2008).

Commercially	available	solar-powered	GPS	and	tri-axial	acceler-
ation	 trackers	 (such	 as	Ornitrack	 transmitters,	Ornitela,	 Lithuania;	
trackers	weigh	9 g	and	up;	suitable	for	birds	>270 g)	allow	the	col-
lection	 and	 transmission	 via	GSM	of	 large	 quantities	 of	 fine-scale	
information	 recorded	 at	 high	 frequency,	 thereby	 capturing	 rapid	
changes	 in	 acceleration	 whilst	 the	 animal	 motion.	 The	 trackers	
generated	a	sizable	quantity	of	data	and	metadata	(1,225,228	GPS	
locations, >130,000,000	 tri-axial	 acceleration	 data	 points	 by	 28	
September	2023),	which	were	archived	in	the	Movebank	repository	
(IDs	 746410443,	 897868497;	 https://	www.	moveb	ank.	org).	 This	
information allows researchers to investigate a range of ecological 
questions	on	topics	like	habitat	selection,	behavioural	adaptations	to	
the environment, energy and activity budgets, energy use and pred-
ator	avoidance	(Masello	et	al.,	2017, 2021),	and	movement	patterns	
via	machine	learning	classification	of	the	behaviour	of	the	birds.	In	
2023,	using	machine	 learning	algorithms	 (Random	Forest,	Support	
Vector	Machine	and	Extreme	Gradient	Boosting),	we	were	able	to	
categorize	the	behaviour	of	Common	Woodpigeons	(Columba palum-
bus)	into	three	main	patterns,	which	are	foraging,	flying,	and	resting	
and calculated time budgets over the breeding and winter season 
(Figure 4a,b;	Masello	et	al.,	2023).

In	2020,	space-based	tracking	technology,	like	the	International	
Cooperation	for	Animal	Research	Using	Space	(ICARUS)	receiver	
aboard	 the	 Russian	 module	 of	 the	 International	 Space	 Station	
enabled	 the	 use	 of	 low-cost	 miniature	 tags	 to	 investigate	 ani-
mal	movement	 (Jetz	et	al.,	2022).	This	technology	facilitated	the	
fine-scale	tracking	of	medium-sized	species	 like	the	Eurasian	Jay	
(Garrulus glandarius)	 in	 the	Marburg	 Open	 Forest.	 During	 2021,	
nine	Eurasian	 Jays	were	 fitted	with	5 g	 ICARUS	 tags	 (Figure 4c),	
which precisely recorded their positions, enabling the investiga-
tion of the use of the forest and adjacent habitats by this species 
(Figure 4d).	 Unfortunately,	 the	 Russian	 space	 agency	 ceased	 its	
cooperation	with	ICARUS	on	the	ISS,	thus	data	transmissions	from	
the	 International	 Space	 Station	were	 terminated	 in	March	 2022	
(https:// www. icarus. mpg. de/ en).	 Currently,	 ICARUS	 is	 exploring	
options to establish alternative data transmission approaches 
(Wikelski	et	al.,	2007).

2.1.2  |  Detection

Bird species in soundscapes
Birds are the target of several biodiversity monitoring programs 
because	they	are	vocal	and	thus	relatively	easy	to	monitor	 (Bibby	
et al., 2000),	their	response	to	anthropogenic	change	is	often	cor-
related	 to	 other	 taxa	 (Gregory	 et	 al.,	2005),	 and	 they	 contribute	
to	 ecosystem	 services	 in	 a	 variety	 of	 ways	 (Sekercioglu,	 2006).	
Despite their relevance, we not only continue to lose bird species 
(IPBES,	2019)	but	also	a	sharp	decline	in	breeding	bird	abundance	
in	North	America	and	Europe	has	been	observed	in	recent	decades	
(Inger	 et	 al.,	2015; Rosenberg et al., 2019).	 To	 adequately	 assess	
the current state of bird communities and counteract the ongoing 
loss	of	biodiversity,	autonomous	sound	recorders	(“AudioMoth”,	Hill	
et al., 2018)	were	deployed	in	the	Nature	4.0	project	as	cost-effec-
tive	devices	for	high-resolution	monitoring	(Wägele	et	al.,	2022).

Rapidly evolving deep learning methods, such as convolutional 
neural	 networks	 (CNN),	 effectively	 support	 the	 automated	 iden-
tification	 of	 different	 species	 from	 AudioMoth	 recordings	 (Kahl	
et al., 2021;	LeBien	et	al.,	2020; Ruff et al., 2020).	However,	auton-
omous sound recordings so far show considerable differences in 
the composition of identified bird communities compared to field 
surveys	(Blake,	2021;	Pérez-Granados	et	al.,	2019).	To	improve	the	
congruency between autonomous sound recordings and manual 
bird surveys, we trained machine learning models to simultaneously 
detect	 and	 identify	 different	 bird	 species	 in	 audio	 recordings.	 For	
this	 purpose,	 novel	 neural	 network	 architectures,	 pre-processing	
schemes, and training strategies were developed and investigated. 
Our	 approach	 is	 based	 on	 a	 neural	 architecture	 search	 (Mühling	
et al., 2020)	and	was	the	winner	of	the	international	BirdCLEF	2020	
challenge	 (https://	www.	image	clef.	org/	BirdC	LEF2020).	Overall,	 our	
findings show that the automated monitoring revealed not only 
similar results for species diversity, but also for the bird community 
composition	compared	to	the	expert	surveys,	which	are	particularly	
relevant for conservation.

To	overcome	 the	disadvantage	of	 the	data	 collection	phase	of	
otherwise	autonomous	sound	recording,	we	have	developed	Bird@
Edge,	an	edge	artificial	intelligence	(AI)	system	for	recognizing	bird	
species	 in	 audio	 recordings	 to	 support	 near	 real-time	 biodiversity	

F I G U R E  3 Handling	of	a	tagged	female	Eurasian	blackcap	(a,	Sylvia atricapilla).	The	tiny	(<0.6 g)	VHF	tag	is	mounted	on	the	back	of	the	
bird	using	a	figure-eight	harness,	with	a	handheld	Yagi	antenna	for	mobile	activity	and	location	tracking.	Photo:	S.	Rösner.	A	female	racoon	
(Procyon lotor)	equipped	with	a	GPS-GSM	collar	visiting	a	baited	walk-in	trap	(b).	Photo:	S.	Rösner	via	remote	camera	control.

https://www.movebank.org
https://www.icarus.mpg.de/en
https://www.imageclef.org/BirdCLEF2020
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monitoring	(Figure 5;	Höchst	et	al.,	2022).	Edge	AI	refers	to	AI	com-
putations performed on the device where the data is collected, 
rather	than	at	a	centralized	computing	facility.

Bird@Edge	utilizes	multiple	microphones	based	on	the	ESP32	
microcontroller unit to stream audio to a station, where bird spe-
cies	recognition	takes	place	(Figure 6).	The	recognition	results	of	
different	 stations	 are	 transmitted	 to	 a	 backend	 cloud	 server	 for	
further	 analysis	 by	 biodiversity	 researchers.	 A	 deep	 neural	 net-
work	based	on	the	EfficientNet-B3	architecture	was	trained	and	
optimized	for	execution	on	embedded	edge	devices	and	deployed	
on	 NVIDIA	 Jetson	 Nano	 stations	 using	 the	 DeepStream	 SDK.	
During	an	experimental	evaluation	in	2022,	we	found	that	our	sys-
tem	 reaches	 a	 recognition	quality	 of	 up	 to	95.2%	mean	 average	
precision	on	soundscape	recordings	in	the	Marburg	Open	Forest	
(Höchst	et	al.,	2022).

Bat species in audio recordings
Bats	 are	 the	 most	 geographically	 dispersed	 taxonomic	 group	
among	terrestrial	mammals.	Excluding	the	Arctic,	Antarctic,	and	a	
few isolated islands, all regions of the earth are inhabited by bats 
(Kunz,	1982).	With	 almost	1400	 recognized	 taxa,	 bats	 represent	

almost	 one-fifth	 of	 the	mammalian	 diversity	 (Frick	 et	 al.,	2020).	
Unfortunately,	 about	 one-third	 of	 all	 bat	 species	 are	 classi-
fied	 as	 threatened	 or	 data	 deficient	 by	 the	 International	 Union	
for	 Conservation	 of	 Nature	 (IUCN),	 and	 evidence	 suggests	 that	
approximately	 half	 of	 all	 bat	 species	 are	 experiencing	 popula-
tion	 declines,	 or	 have	 an	 unknown	 population	 trajectory	 (Frick	
et al., 2020).	To	monitor	populations	of	bat	species	and	thus,	bio-
diversity at scale, automatic bat echolocation call detection and 
bat	species	recognition	approaches	are	required.

To	address	 this	need,	we	developed	a	new	approach	 (Bellafkir	
et al., 2022, Figure 7)	for	detecting	bat	echolocation	calls	and	rec-
ognizing	bat	species	 in	audio	spectrograms.	Our	method	uses	pre-
trained	 data-efficient	 image	 transformer	 models	 that	 are	 used	 as	
components	in	a	workflow	we	designed	for	processing	audio	spec-
trograms	 of	 recorded	 bat	 echolocation	 calls.	 The	 workflow	 con-
sists	of	 two	phases:	 In	 the	first	phase,	 the	recordings	are	scanned	
in	 a	 sliding	window	approach	 to	 localize	echolocation	 calls.	 In	 the	
second phase, the detected calls are classified and assigned to the 
corresponding bat species. We have shown that our method out-
performs	 state-of-the-art	 CNN	 approaches	 for	 detecting	 bat	 calls	
and	 recognizing	 bat	 species	 in	 several	 publicly	 available	 datasets	

F I G U R E  4 Use	of	biologging	technologies	to	infer	behaviour	and	habitat	use.	Common	Woodpigeon	(Columba palumbus)	with	
OrniTrack-15	solar-powered	GPS-GSM/GPRS	trackers	during	deployment	(a,	Photo:	S.	Rösner),	and	representative	burst	corresponding	to	
dynamic	acceleration	during	feeding	behaviour	of	this	species	(c).	We	represented	acceleration	(in	g/1000,	as	received	from	the	sensor),	
using colored continuous lines: blue in for the surge x-axis,	orange	for	sway	(y-axis),	and	grey	for	heave	(y-axis).	The	x-axis	of	the	graph	
illustrates	the	201	measurements	recorded	during	the	burst,	that	is,	one	measurement	during	the	GPS	fix	and	200	after	that.	Eurasian	Jay	
(Garrulus glandarius)	fitted	with	a	5 g	ICARUS	tag	(b,	Photo:	J.	F.	Masello),	and	(d)	subsequent	tracking	at	the	Marburg	Open	Forest	in	2021.	
Background	map	in	(d):	OpenStreetMap	contributors	(2023).
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while achieving an average accuracy of up to 90.2% for detection 
and	up	 to	88.7%	mean	average	precision	 for	 recognition	 (Bellafkir	
et al., 2022).

To	further	improve	detection	and	recognition	performance	and	en-
able bat behaviour recognition in audio recordings, we applied an ob-
ject	detection	model	to	our	spectrograms	(Vogelbacher	et	al.,	2023).	
In	addition	to	species	recognition	from	echolocation	calls,	our	model	
is	able	to	categorize	bat	calls	into	three	call	types	based	on	behavior:	
echolocation	call,	feeding	buzz,	and	social	call,	with	a	mean	average	
precision of 98.4%, 98.3%, and 95.6%, respectively.

Wildlife species in camera trap images
Camera	traps,	first	 introduced	in	1956	(Gysel	&	Davis,	1956),	have	
contributed	greatly	to	wildlife	ecology	in	recent	decades	(O'Connell	
et al., 2011).	These	heat	or	motion	activated	cameras	are	placed	in	
the wild to automatically record photos and/or videos of animals over 
a period of time, without the species in focus being disturbed by the 
presence	of	humans.	Due	to	the	quantity	of	data	generated,	manual	
analysis	by	experts	 is	prohibitively	expensive	and	time	consuming,	
thus	it	is	desirable	to	automate	this	process	(Schneider	et	al.,	2020).

In	the	Nature	4.0	project,	we	used	camera	traps	to	record	photos	
and	videos	in	the	Marburg	Open	Forest	over	several	years.	We	im-
plemented	a	two-stage	process	using	AI	to	analyse	the	data.	In	the	
first	step,	to	localize	the	animals	in	the	images	and	to	filter	out	empty	
images,	we	used	Microsoft's	MegaDetector	software	(https:// github. 
com/	micro	soft/	Camer	aTraps).	MegaDetector	is	an	object	detection	
model, which has been trained with a very large number of camera 

trap images captured worldwide, and therefore achieves very good 
animal detection rates, even under poor visibility conditions.

To	 identify	 the	 animal	 species,	we	 trained	 a	 custom	classifica-
tion	model	based	on	an	EfficientNetV2	network	 (Tan	&	Le,	2021).	
Training	images	were	obtained	from	freely	available	datasets	of	cam-
era	trap	images	from	Europe	and	North	America	along	with	wildlife	
photos	 from	websites	 such	 as	 iNaturalist	 (https:// www. inatu ralist. 
org).	 The	 trained	model	 achieved	 around	 87%	mean	 average	 pre-
cision on a validation dataset consisting of a withheld subset from 
the same sources. We successfully applied the model in the analy-
sis	of	the	images	and	videos	recorded	in	the	Marburg	Open	Forest	
(Figure 8),	where	 it	achieved	93.88%	mean	average	precision	on	a	
manually	labelled	subset	(Schneider	et	al.,	2023).

Insects with automated camera light traps
Reports	of	insect	decline	highlight	the	need	for	extensive,	continu-
ous,	 and	 fine-grained	monitoring	 (Didham	et	 al.,	2020; Engelhardt 
et al., 2022;	Hallmann	et	 al.,	2017).	 The	number	of	 sampling	 sites	
is	not	only	limited	by	personnel,	maintenance,	and	post-processing	
costs, but also by ethical considerations. Even inventories of moths, 
which—due	 to	 their	 high	 diversity	 and	 close	 ties	 to	 the	 environ-
ment—are	one	of	the	most	continuously	and	intensively	monitored	
insect	groups	(Fox,	2013),	are	not	extensive	enough	to	provide	the	
information	 necessary	 for	 effective	 conservation	 work	 (Sánchez-
Fernández	et	al.,	2021).	 In	 recent	years,	 the	 rapid	development	of	
non-lethal,	 automated	moth	 traps	 to	address	 these	 issues	became	
apparent	(Bjerge	et	al.,	2021).

F I G U R E  5 Conceptual	framework	
of	Bird@Edge.	Bird@Edge	uses	audio	
recorders	and	Artificial	Intelligence	(AI)	
to	detect	the	diversity	of	bird	species.	It	
comprises multiple microphone units that 
stream audio to their respective station 
which	performs	AI-mediated	bird	species	
recognition.	The	results	are	transmitted	
to	a	backend	cloud	server,	where	they	can	
be accessed and analysed through a web 
frontend.

https://github.com/microsoft/CameraTraps
https://github.com/microsoft/CameraTraps
https://www.inaturalist.org
https://www.inaturalist.org
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In	the	Nature	4.0	project,	we	developed	several	low-cost	auto-
mated	moth	traps	as	tools	for	monitoring	moth	abundance	(Mielke	
Möglich	et	al.,	2023; Figure 9).	Our	automated	moth	trap	 is	built	

from	off-the-shelf	components,	which	are	powered	by	batteries	or	
solar	panels.	The	device	has	a	sensor	box	at	its	core,	containing	a	
camera	operated	by	a	Raspberry	Pi	and	a	flashlight	for	illuminated	

F I G U R E  6 Hard-	and	software	
solutions	of	Bird@Edge.	Bird@Edge	
consists	of	multiple	microphone	units	(a,	
b)	that	stream	audio	to	their	respective	
station which performs artificial 
intelligence-mediated	bird	species	
recognition.	The	results	are	transmitted	
to	a	backend	cloud	server	and	can	be	
accessed and analysed through a web 
frontend.	In	this	example,	the	frontend	
shows	recognized	bird	species	recorded	
by	a	single	Bird@Edge	microphone	(c;	
x-axis:	clock	time,	y-axis:	recognition	
confidence).

F I G U R E  7 Bat	species	detection	and	recognition	pipeline.	The	workflow	of	our	approach	comprises	two	phases:	In	the	first	phase,	a	
recording	is	scanned	to	localize	the	echolocation	calls	using	a	deep	neural	network.	In	the	second	phase,	the	detected	calls	are	classified	and	
assigned	to	the	corresponding	bat	species	using	another	deep	neural	network.
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photos.	 UV-light	 is	 used	 to	 attract	moths	 to	 the	 LED	 board	 op-
posite	to	the	camera	as	a	standardized	resting	place.	The	modu-
lar	 setup	 allows	 for	 the	 exchangeability	 of	 components,	 such	 as	
hardware upgrades, and the software implementation allows for 
customizable	light	schedules.	Metadata	are	stored	in	YAML	files.	
Furthermore,	autonomous	monitoring	of	moths	over	long	periods	
of	time	is	feasible.	Our	automated	moth	traps	elucidate	seasonal	
abundance	trends	and	provide	high-quality	training	data	for	neural	
networks.	This	proof-of-concept	also	set	the	foundation	for	inte-
grating	automated	AI-powered	species	recognition	and	trait	mea-
surements	in	future	design	builds.	The	precise	information	about	
the	temporal	activity	of	moths,	customizable	light	schedules,	and	

non-lethal	 method	 of	 capturing	 individuals	 provides	 opportuni-
ties for further implementation in other areas of research, such as 
movement ecology.

Insects with radar
The	 looming	 prospect	 of	 40%	 of	 insect	 species	 becoming	 extinct	
over	 the	 next	 few	 decades	 (Leather,	 2018)	 due	 to	 the	 extensive	
use	 of	 pesticides,	 intensive	 land	 use,	 and	 climate	 change	 (Groom	
et al., 2006)	necessitates	new	concepts	for	autonomous	and	high-
resolution	 entomological	 monitoring.	 A	 recent	 review	 of	 the	 cur-
rent	 state	 of	 insect	 monitoring	 by	 Noskov,	 Bendix,	 et	 al.	 (2021)	
demonstrates insect radar solutions to be a suitable option for fu-
ture	 real-time	monitoring.	Modern	 compact	 frequency-modulated	
continuous-wave	radar	units	have	shown	potential	to	solve	one	of	
the main specific challenges inherent to insect monitoring, namely, 
observing	insects	on	low	flight	paths	near	the	ground.	Such	meas-
urements have not previously been possible with conventional ver-
tically pointing radar systems due to blind spots at altitudes lower 
than	150 m	(Chapman	et	al.,	2002).

We have developed a novel insect radar setup based on a com-
pact	 frequency-modulated	 continuous-wave	 radar	 module,	 which	
was originally developed for autonomous driving applications. 
Noskov,	Achilles,	et	al.	(2021)	introduced	the	proposed	radar	system,	
demonstrated	 its	viability,	and	summarized	multiple	 laboratory	ex-
periments.	Insect	detection	and	biomass	estimation	were	achieved	
with	a	 tailor-made	mathematical	 approach.	The	conducted	 lab	ex-
periments	have	confirmed	the	efficacy	of	our	solution.	In	addition,	a	
light trap was installed for initial testing of the data collected by the 
radar	component.	The	setup	has	been	evaluated	under	field	condi-
tions	 in	the	Marburg	Open	Forest.	A	compact	autonomous	sensor	
box	has	been	designed	for	the	entire	system	and	successfully	used	
in	the	forest	during	all	 rain-free	days	 (Figure 10).	A	field	campaign	
conducted	by	Noskov	et	al.	 (2023)	demonstrated	the	suitability	of	
this	novel	system	in	a	forest	environment.	A	major	advantage	of	this	
system is that it is much smaller and more cost effective compared 
to	 conventional	 vertically	 pointing	 devices,	 which	 require	 a	 cable	
to	 remain	powered	and	housing	 for	 the	processing	unit	 (Chapman	
et al., 2002).	In	contrast,	our	solution	can	be	used	as	a	mobile	device.	
This	novel	functionality	enabled	it	to	be	mounted	to	our	rover	plat-
form	(see	section	“A	multisensor	rover	platform”)	 to	collect	spatial	
data of low flying insects at multiple positions in the forest.

F I G U R E  8 Animal	detection	in	camera	
trap	images.	The	images	are	automatically	
analysed	by	the	AI	models,	first	detecting	
the location of animals in the image and 
then classifying the species for that area. 
Here:	Roe	deer	(Capreolus capreolus).	
Photo:	recorded	by	a	camera	trap	in	the	
Marburg	Open	Forest.

F I G U R E  9 Insect	monitoring.	Automated	moth	trap	for	
monitoring insect abundance by capturing photos of attracted 
moths	via	UV-light.	Photo:	L.	Heidrich.
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2.1.3  | Measuring

Monitoring trees with TreeTalkers
Networked	tree	sensors	record	and	transmit	information	on	physio-
logical processes at the individual tree level along with environmen-
tal	parameters.	A	general	 trade-off	 inherent	 to	 the	design	of	such	
devices	is	the	quality	of	the	sensors,	which	affects	the	accuracy	of	
measurements versus cost effectiveness, which affects the possibil-
ity	of	large-scale	deployment.	In	the	Nature	4.0	project,	we	followed	
a	 massive	 deployment	 philosophy	 with	 the	 mindset	 of	 tracking	
ecosystem responses using trees as sensors themselves, instead 
of	having	highly	accurate	measurements	of	 just	a	few	trees.	In	the	
Marburg	Open	Forest,	we	have	been	piloting	such	a	sensor	network	
comprised	of	59	TreeTalkers	(Valentini	et	al.,	2019)	distributed	across	
~120 ha	since	spring	2020,	achieving	a	relatively	dense	coverage	of	
one	TreeTalker	every	2 ha.

The	TreeTalkers	function	like	an	Internet	of	Things	(IoT)	device,	
and	combine	multiple	sensors	around	an	ATMega328P	8-bit	micro-
controller	(Figure 11).	The	water	status	of	the	trees	is	captured	by	a	
classic	Granier-type	sap	flux	sensor	(±0.1°C)	and	a	capacitive	sensor	
for	stem	humidity	(Asgharinia	et	al.,	2022).	Incremental	growth	was	

estimated	by	an	infrared	dendrometer	(±100 μm).	An	accelerometer	
(±0.001°)	allows	the	detection	of	 tree	stem	movements	 for	analy-
sis	of	local	wind	loads.	A	12-band	multispectral	sensor	directed	into	
the	canopy	was	used	to	calculate	vegetation	indices.	Additionally,	air	
temperature	(±0.1°C)	and	air	humidity	(±2%)	were	measured.	A	full	
set of measurements is recorded hourly and transmitted via our long 
range	wide	area	network	 (LoRa,	see	Section	2.7)	 to	a	gateway.	All	
backups	of	the	data	were	stored	on	internal	flash	memory	devices.	
In	the	configuration	used	in	the	Nature	4.0	project,	the	TreeTalkers'	
solar	panel-supported	Li-ion	batteries	provide	power	for	6 weeks	of	
operation,	including	power	consumed	for	sap	flux	measurements.

A reference network for high-accuracy positioning in forests
A	 well-known	 limitation	 of	 the	 global	 navigation	 satellite	 system	
(GNSS)	is	that	it	is	often	impossible	to	obtain	accurate	coordinates	
within	forests	(Pirti	et	al.,	2010).	Thus,	obtaining	accurate	position-
ing	data	in	forests	remains	a	challenge.	As	one	consequence	recur-
rent	point	clouds	obtained	by	cameras	mounted	on	an	Unmanned	
Aircraft	System	(UAS)	for	monitoring	trees	require	their	position	to	
be adjusted repeatedly due to the low accuracy of the registered 
coordinates	by	the	UAS	and	location	problems	due	to	the	different	

F I G U R E  1 0 Insect	radar	box.	Left:	An	
autonomous	compact	insect	radar	box	
in	operation	equipped	with	a	light	trap	
and	a	camera	for	collecting	ground-truth	
information.	Right:	Schematic	illustration	
of	the	insect	radar	box.	Photo:	A.	Noskov.

F I G U R E  11 TreeTalker	mounted	
on	a	beech	tree.	Sensors	and	other	
components	of	the	TreeTalker	tree	
monitoring	system.	Photo:	M.	Leberecht.
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observation geometries used. Without accurate positioning data, 
it is impossible to meaningfully compare different point clouds and 
derived	products	from	individual	trees.	To	provide	a	good	baseline	
for	 subsequent	 accuracy	 corrections,	 all	 trees	 of	 interest	 within	
the	 Marburg	 Open	 Forest	 were	 measured	 with	 a	 total	 station	
(Figure 12a).	A	total	station	is	an	optical-electronic	surveying	instru-
ment used to calculate angles and distances.

In	the	Nature	4.0	project,	we	first	established	high-accuracy	ref-
erence points in two meadow areas close to the areas of interest. 
We then used the total station to obtain multiple reference points 
(37	installed	survey	marks)	in	the	forest	enabling	us	to	reach	an	accu-
racy	of	2 cm.	Finally,	the	main	structure	of	the	trees	(stem	and	main	
branches; Figure 12b)	was	measured	with	the	total	station	using	at	
least	three	reference	points.	Additionally,	the	total	station	was	also	
used	to	measure	the	accurate	position	of	other	sensors.	This	for	in-
stance	enabled	us	to	install	a	sensor	at	the	exact	same	place	after	the	
winter	break,	and	thus	to	seamlessly	integrate	our	new	data	with	the	
previous	data.	Furthermore,	 rover	 tracks	 (see	section	below)	were	
measured	accurately	using	the	total	station.	For	this,	the	rover	was	
equipped	with	a	360-degree	prism	allowing	an	accurate	definition	
of	the	rover's	position	with	coordinates	that	were	automatically	re-
corded during each journey.

A multisensor rover platform
While	 UASs	 remain	 very	 popular	 in	 forest	 monitoring	 (González-
Jaramillo et al., 2019),	 rovers	 also	 show	 promise	 in	 this	 field	 as	
they	 have	 several	 advantages	 (Muthulakshmi	 et	 al.,	 2022;	 Niu	
et al., 2020).	 In	 the	Nature	 4.0	 project,	 using	 a	 rover	was	 benefi-
cial as it enabled us to deploy multiple sensors for a variety of func-
tions, including microclimate measurements and enabling accurate 
low-viewpoint	 large-scale	mapping	of	 the	 forest	with	camera	sen-
sors	(Figure 13).	Our	rover	can	carry	relatively	heavy	sensors	such	
as the insect radar and has good manoeuvrability in forested areas. 

With the insect radar mounted, it can collect spatial information on 
low	 flying	 insects.	However,	 using	 the	 rover	 as	 a	mobile	 platform	
required	 automatic	 navigation.	 Therefore,	 we	 developed	 a	 simple	
mark-based	 navigation	 approach	 to	 support	 low	 insect	 flight	 re-
search in the future. Currently, we use a prism attached to the rover 
allowing	 visual	 tracking	 of	 a	 robotic	 total	 station	 while	 recording	
coordinates of the rover automatically at short intervals with very 
high	accuracy	of	about	1 cm.	In	addition	to	the	insect	radar,	the	rover	
was	equipped	with	several	other	sensors,	such	as	rpLiDAR	(for	navi-
gation	 and	 trees	 position	mapping),	 both	 infrared	 and	RGB	 global	
shutter	 cameras	 (for	navigation	 and	vegetation	 information	 acqui-
sition),	 sky-oriented	 cameras	 (for	 tree	 crown	monitoring	 from	 the	
ground)	with	flashlights	(for	catching	insects),	microphones	(for	for-
est	soundscape	mapping),	ground-oriented	back	cameras	sensitive	
to	infrared	(NoIR),	and	thermal	sensors	(thermal	camera	and	infrared	

F I G U R E  1 2 Reference	network.	
We	created	a	reference	network	for	
high-accuracy	positioning	in	forests.	(a)	
Surveying	with	the	global	navigation	
satellite	system	(GNSS)	and	a	total	station	
for	establishing	a	reference	network	and	
tree	measuring.	(b)	Example	of	a	measured	
tree	with	2 cm	accuracy	(green	points—
stem,	blue	points—main	branches).	Photo:	
A.	Noskov.

F I G U R E  1 3 Multisensor	rover	platform.	Rover	equipped	with	
multiple	sensors	and	a	prism	for	tracking	by	a	robotic	total	station.	
Photo:	M.	Dobbermann.
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thermometer)	for	forest	floor	measurements.	In	the	field	campaign	
outlined	in	Noskov	et	al.	(2023),	they	sought	to	monitor	forest	phe-
nology with a rover they designed, and confirmed the efficacy of this 
proposed	multisensory	system	in	the	forest.	Adoption	of	the	visual	
tracking	mechanism,	and	utilization	of	the	Raspberry	Pi-based	com-
putation	module	enables	simultaneous,	real-time,	and	high-accuracy	
positioning of observed objects.

One	of	the	use	cases	still	 in	progress	in	the	Nature	4.0	project	
is	 accurate	 large-scale	 surface	 temperature	 mapping,	 which	 will	
provide micro niche conditions that are important for soil meso-
fauna	 and	microbes.	 For	 these	 tasks,	 it	was	 sometimes	 necessary	
to	navigate	the	rover	manually	with	a	wireless	controller.	On	its	way	
through the forest, the rover can also collect information from mul-
tiple	permanently	 installed	 sensors	 (such	as	 the	TreeTalkers)	 as	an	
automatic	way	of	data	harvesting	if	no	LoRa	coverage	is	available.

2.1.4  |  Sensing

Spaceborne and airborne remote sensing
Spaceborne	and	airborne	remote	sensing	data	are	highly	valuable	
for	 biodiversity	 monitoring	 (Turner	 et	 al.,	 2015).	 They	 provide	
cost-effective,	 efficient,	 and	 non-invasive	means	 to	 collect	 data	
about	the	Earth's	surface.	Remote	sensing	data	provide	informa-
tion at different spatial and temporal scales and can facilitate 
monitoring of remote or inaccessible areas that would otherwise 
be	difficult	to	access	through	traditional	field	work	methods,	thus	
allowing for a more complete understanding of biodiversity pat-
terns	and	trends	(Pettorelli	et	al.,	2014, 2016).	Due	to	the	variety	
of spectral, temporal, spatial resolutions, and the differences in 
data	quality	between	the	various	remote	sensing	platforms,	they	
can be used to monitor biodiversity from the individual species 
level to full ecosystems, and depending on which level of detail is 
necessary	for	the	biodiversity	monitoring	task,	different	platforms	
can be chosen for use.

UASs	offer	a	cost-effective	means	of	acquiring	remote	sensing	
data, with the possibility of generating temporally fine scale time 
series.	However,	 their	use	requires	 the	presence	of	an	operator	 in	
the	field,	and	UASs	are	susceptible	to	inaccurate	georeferencing,	as	
well as shadow and light effects.

Aeroplane	 remote	 sensing	 is	 more	 expensive	 than	 UAS-based	
remote	 sensing,	 but	 it	 often	 provides	 higher-quality	 images,	 such	
as	Digital	Orthophotos	(DOPs),	which	are	created	by	correcting	for	
distortion	in	aerial	photographs.	DOPs	typically	cover	large	areas	at	
high	spatial	resolution	(~20 cm),	but	their	temporal	resolution	is	low,	
with	public	 authorities	 acquiring	only	one	 image	every	2 years	 for	
the	Marburg	Open	Forest.	Aeroplanes	are	also	used	for	large-scale	
LiDAR	campaigns,	thereby	providing	valuable	information	about	the	
three-dimensional	structure	of	forested	areas.

Satellite	remote	sensing	is	extensively	used	due	to	its	comprehen-
sive spatial coverage, high temporal resolution, and medium spatial 
resolution.	Furthermore,	satellite	remote	sensing	data	is	often	freely	
available	 from	organizations	 such	as	NASA	and	ESA.	Although	 they	

lack	 the	 flexible	 temporal	 resolution	of	UASs,	 they	are	more	 stable,	
providing	high-quality	data,	often	at	multispectral	resolutions.

In	 the	Nature	4.0	project,	we	used	multispectral	 satellite	 im-
ages	with	a	spatial	resolution	of	10 m	from	the	Sentinel-2	satellites,	
data	from	a	UAS	time	series	campaign	flown	during	the	vegetation	
period	with	a	 temporal	 resolution	of	1–2 weeks,	 and	LiDAR	data	
(Figure 14).	 We	 also	 used	 DOPs	 provided	 by	 the	 local	 authori-
ties	(Hessian	Agency	for	Nature	Conservation,	Environment,	and	
Geology,	HLNUG).	These	spaceborne	and	airborne	remote	sensing	
data	were	used	to	upscale	data	acquired	with	the	sensor	network	
in	the	field	(see	Section	2.8).	In	the	context	of	large-scale	projects	
involving	 extensive	 data	 collection,	 the	 importance	 of	 efficient	
data	and	metadata	management	cannot	be	overstated.	 In	partic-
ular,	 when	working	with	 very	 large	 datasets,	 such	 as	 ones	 con-
taining	 spectral	 data,	 utilizing	 file	 formats	 like	 Cloud	Optimized	
GeoTIFF	with	 SpatioTemporal	 Asset	 Catalog	metadata	 becomes	
the eminently practical choice.

2.2  |  Public participation

Global change and ecological collapse are some of the defining 
challenges	of	this	generation,	and	to	tackle	these	challenges	will	
require	widespread	support	and	awareness	from	the	general	public	
(Intergovernmental	Panel	on	Climate	Change,	2021;	International	
Union	for	Conservation	of	Nature,	2020).	This	is	particularly	true	
where our fragile forest ecosystems are concerned, and where 
wider public awareness needs to be created. Education for sus-
tainable development addresses these challenges and helps to 
foster awareness of the scientific approaches and contemporary 
technology, which is necessary to identify and discuss the possible 
future	of	human-environment	interactions	(UNESCO,	2020).	This	
challenge	 is	addressed	by	 the	SENSO-Trail	 in	 the	Marburg	Open	
Forest	(Figure 15).

The	SENSO-Trail	was	designed	for	students	and	upper	second-
ary	school	pupils	and	consists	of	six	stations:	(1)	the	observation	of	
an	 individuum	 through	 the	 example	 of	 the	 physiology	 of	 a	 single	
tree,	 (2)	 the	 lifeless	environment	through	the	example	of	microcli-
mates,	 (3)	 the	role	of	the	tree	as	a	habitat	and	 its	 interaction	with	
wildlife	 as	 a	microcosm	of	 the	 living	 environment,	 (4)	 the	 applica-
tion	of	machine	 learning	methods,	 and	 (5)	 remote	 sensing.	 It	ends	
with	the	modelling	of	forest	ecosystems	in	a	societal	context	with	
a concrete application reference, such as the development of digital 
environmental models.

The	 SENSO-Trail	 uses	 a	 multi-perspective	 approach	 (Schmayl,	
1995)	to	break	down	the	content	complexity	of	the	Nature	4.0	proj-
ect,	 raise	awareness,	and	promote	subject-specific	knowledge	and	
scientific	literacy	(Bengel	&	Peter,	2023).	Datasets	from	the	Nature	
4.0	 project	 can	be	 accessed	 in	 the	 SENSO-Trail	 and	 individual	 re-
flection	is	used	to	contextualize	the	learning	experience.	If	the	user	
develops	an	appreciation	for	the	complexity	of	natural	systems,	and	
an	expanded	understanding	of	the	biotic	and	abiotic	environment	at	
different scales, each with their own spatiotemporal relationships, 
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then	 the	 goals	 of	 project	 participation	 will	 be	 met	 (DGfG,	 2021; 
Friess	et	al.,	2020;	UNESCO,	2020).

The	SENSO-Trail	is	intended	for	use	in	education	about	sustain-
able	development,	and	it	is	designed	as	a	mobile	digital-game-based	
learning	approach	with	a	non-linear,	modular	structure.	It	can	be	ex-
plored independently by the participants using tablets running the 
SENSO	app.	The	SENSO-Trail	can	be	explored	as	a	field	trip	in	the	
real	forest	or	a	virtual	field	trip,	SENSO-Trail360	(public	demo	ver-
sion: http:// 85. 214. 136. 59/ ).	 The	 SENSO-Trail	 was	 evaluated	with	

pupils	aged	15–17	in	an	intervention	study	and	was	found	to	be	an	
effective	and	robust	tool	for	learning	(Bengel	&	Peter,	2023).

2.3  |  Database systems

We	developed	four	integrated	open-source	database	systems	in	the	
Nature	4.0	project,	which	are	tailored	to	the	specific	needs	of	each	
data type obtained.

F I G U R E  14 Spaceborne	and	airborne	remote	sensing	in	the	Marburg	Open	Forest.	Satellite,	aeroplane,	and	unmanned	aircraft	system	
(UAS)	data	were	obtained	for	the	Marburg	Open	Forest	in	addition	to	the	data	collected	by	the	sensor	system	on	the	ground	for	upscaling	
the	field	data	to	area-wide	maps.	(a)	Canopy	image	obtained	with	a	UAS.	Photo:	S.	Egli.	(b)	Visualization	of	a	three-dimensional	point	cloud	
recorded	with	LiDAR.	Data:	Hessian	Agency	for	Nature	Conservation,	Environment,	and	Geology	(HLNUG).	(c)	A	visualization	of	a	three-
dimensional	point	cloud	at	single	tree	level	based	on	LiDAR	data.	Data:	HLNUG.	(d)	Location	of	the	Marburg	Open	Forest	in	Europe	shown	
as	a	black	dot.	Data:	OpenStreetMap	contributors	(2023).	(e)	RGB	composite	of	the	Marburg	Open	Forest	(outlined	in	blue)	of	a	digital	
orthophoto	recorded	by	aeroplane.	Data:	HLNUG.	White	areas	in	(e)	and	(i)	show	the	section	on	which	panels	(b)	and	(f–h)	respectively	have	
zoomed	in	on.	(f)	RGB	composite	of	an	image	obtained	with	a	UAS.	Data:	The	Nature	4.0	project.	(g)	RGB	composite	of	a	digital	orthophoto	
recorded	by	aeroplane.	Data:	HLNUG.	(h)	Sentinel-2	RGB	composite	with	a	spatial	resolution	of	10 m	of	the	same	area	as	images	(f)	and	(g).	
Data:	ESA.	(i)	The	Marburg	Open	Forest	(outlined	in	blue)	in	an	RGB	composite	of	a	Sentinel-2	scene	with	10 m	spatial	resolution.	Data:	ESA.

http://85.214.136.59/
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2.3.1  |  RSDB

The	satellite	remote	sensing	data,	as	well	as	the	images	acquired	by	UAS	
flights,	are	stored	in	the	Remote	Sensing	Database	(RSDB;	Wöllauer,	
Zeuss,	Magdon,	et	al.,	2021).	RSDB	allows	 for	 the	storage,	manage-
ment, and processing of different types of remote sensing data, such 
as	raster	data	or	LiDAR	point	cloud	data.	RSDB	can	calculate	more	than	
200	biodiversity-related	indices	based	on	the	stored	data.

2.3.2  |  TubeDB

To	 store	 the	 data	 from	 climate	 stations	 and	 the	 transmitted	
TreeTalker	 data,	 we	 developed	 the	 Climate	 Time	 Series	 Database	
(TubeDB;	Wöllauer,	 Zeuss,	 Hänsel,	 et	 al.,	 2021).	 TubeDB	 has	 low	
hardware	 requirements	 and	 is	 simple	 to	 install.	 The	 raw	data	 col-
lected	by	the	sensors	can	be	stored,	quality	controlled,	and	queried.	
Data	from	climate	stations	and	TreeTalkers	can	be	loaded	and	then	
the	time	series	can	be	effectively	processed.	On-demand	requests	
by users, including aggregation by time and gap filling, can be per-
formed	 in	a	web	browser	without	the	need	for	much	prior	knowl-
edge about how to process time series data.

2.3.3  |  AudioDB

Audio	 recordings	 from	 AudioMoth	 devices	 in	 the	 human	 audible	
and	ultrasonic	 range	are	stored	 in	 the	Nature	4.0	Audio	Database	
(AudioDB;	 https://	github.	com/	Natur	e40/	audiodb).	 AudioDB	 can	
produce	spectrograms,	and	supports	variable	playback	speed.	These	

help users to label the data for a range of purposes, including ma-
chine	 learning	 applications.	 Furthermore,	 AudioDB	 produces	 gen-
eral measures of the acoustic environment, and is therefore also a 
robust platform for audio biodiversity monitoring.

2.3.4  |  PhotoDB

Utilizing	 the	photo	database	backend,	 the	PhotoDB	of	 the	Nature	
4.0	 project	 (https://	github.	com/	Natur	e40/	photodb)	 manages	 im-
ages	produced	by	devices	like	wildlife	cameras	and	insect	traps.	The	
query	function	and	image	sequence	view	allow	users	to	quickly	re-
view	large	image	collections	and	label	individuals	(Figure 16).

All	our	databases	provide	web	interfaces,	are	easy	to	install	with-
out	 the	 need	 for	 programming	 skills,	 and	 facilitate	 the	 data	 to	 be	
used for scientists of any discipline.

2.4  |  Example: Data storage with AudioDB

Audio	samples	as	well	as	camera	and	insect	trap	images	should	be	ac-
companied	by	metadata.	Some	metadata	like	recording	duration	or	the	
device's	 serial	number	are	directly	 stored	 in	data	 files	by	 the	gener-
ating	devices.	As	the	data	is	processed,	additional	metadata	is	added	
and	modified.	For	the	sake	of	efficiency	and	to	preserve	the	integrity	
of the original data files we chose an approach to store metadata in 
separate	 files.	 In	 the	 first	 step	metadata	 properties	 from	 the	 origi-
nal	 files	were	extracted	 and	 stored	 in	YAML	 files	 (https:// yaml. org/ 
spec/1. 2. 2),	so	that	each	original	file	will	have	a	corresponding	YAML	
file.	Subsequently,	additional	metadata	was	added	to	the	YAML	files	

F I G U R E  1 5 SENSO-Trail.	(a)	Concept	chart	outlining	the	contextual	framework	and	integral	structures	of	the	educational	approach	
in	simplified	form.	The	SENSO-Trail	is	an	educational	tool	wherein	approaches	from	digital	nature	trails	and	mobile	digital	game-based	
learning	are	combined.	It	was	developed	both	as	a	real	outdoor	field	trip	and	as	a	virtual	field	trip.	The	SENSO-Trail	aims	to	raise	citizens'	and	
students'	awareness	of	the	environmental,	scientific,	and	technological	subjects	related	to	the	Nature	4.0	project.	The	SENSO-Trail	includes	
five	stations	related	to	the	networked	sensor	system:	(1)	single	tree,	(2)	microclimate,	(3)	habitat	and	wildlife,	(4)	the	application	of	machine	
learning	methods,	and	(5)	remote	sensing.	It	ends	with	the	modelling	of	forest	ecosystems	in	a	societal	context.	(b)	Students	visiting	the	
SENSO-Trail	and	exploring	the	Marburg	Open	Forest.	Photo:	P.	Bengel.

https://github.com/Nature40/audiodb
https://github.com/Nature40/photodb
https://yaml.org/spec/1.2.2
https://yaml.org/spec/1.2.2
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as	data	processing	continued.	This	approach	means	that	metadata	is	
not only accessible to our databases, but also through scripts and by 
researchers.	For	example,	the	 location	of	a	recording	 is	essential	 for	
data	analytics.	Furthermore,	because	recording	devices	may	be	spread	
across	the	field	site,	a	lookup	table	can	associate	device	serial	numbers	
and	times	to	locations	in	AudioDB.	With	AudioDB,	it	is	also	possible	to	
add	species	labels	to	the	metadata.	This	can	be	done	with	either	ma-
chine	learning	scripts	or	by	the	users	directly.	Species	labels,	location,	
and	time	form	the	basis	for	monitoring	analytics,	such	as	when	making	
a	time	series	of	species	occurrences	(Figure 17).

2.5  |  Data integration

To	provide	a	unified	overview	of	 the	developed	database	systems	
and to offer the possibility of combining the internal data from the 
different	databases	with	external	data,	we	designed	integration	lay-
ers	with	a	consistent	data	representation.	Such	a	representation	of	
combined datasets allows deeper inferences to be made than each 
local database alone could support.

Our	integration	approach	employs	a	previously	developed	system	
for	visualizing,	analysing,	and	transforming	spatiotemporal	data	(VAT;	
Authmann	et	al.,	2015; Beilschmidt et al., 2017)	and	its	successor	Geo	

Engine	(Beilschmidt	et	al.,	2023),	both	offer	state-of-the-art	technology	
successfully	developed	in	GFBio	(Diepenbroek	et	al.,	2014),	and	were	
subsequently	 refined	 in	 NFDI4Biodiversity	 (Glöckner	 et	 al.,	 2019).	
Geo	Engine	provides	user	 interfaces	 to	 import	and	export	both	ras-
terized	and	vectorized	spatial	data,	following	common	data	standards	
(Figure 18).	 Similar	 to	 GIS	 software,	 there	 are	multiple	 layers,	 each	
representing	a	thematic	topic.	Thus,	Geo	Engine	supports	an	ad-hoc	
combination of arbitrary layers and can also calculate many crucial bio-
diversity	indicators	as	a	function	of	time.	Furthermore,	due	to	an	easy-
to-use	web	interface,	Geo	Engine	facilitates	the	creation	of	powerful	
workflows	 for	complex	computations	and	visualizations	without	 the	
need	to	write	any	code.	These	workflows,	and	the	entire	map	visual-
ization	adapt	to	changes	 in	the	spatial	and	temporal	context,	that	 is,	
the	visualization	will	be	redrawn	when	a	user	changes	the	geographic	
region or the time period.

As	Geo	Engine	is	a	core	component	within	NFDI4Biodiversity,	an	
additional	two	future	research	opportunities	appear.	Firstly,	data	from	
the	Nature	4.0	project	can	be	readily	shared	with	the	large	user	com-
munity	of	NFDI4Biodiversity.	Secondly,	data	from	NFDI4Biodiversity	
can	be	used	in	the	Nature	4.0	project.	The	synergy	created	by	combin-
ing both enables farther reaching inferences to be made in the future.

Geo Engine, for instance, adheres to rigorous metadata stan-
dards,	 ensuring	 that	 data	 imported	 or	 exported	 to	 it	 retains	 its	

F I G U R E  1 6 PhotoDB.	PhotoDB	is	used	for	storing,	querying,	and	inspecting	images	as	well	as	for	creating	and	refining	training	samples	for	
machine	learning	applications.	The	left	panel	offers	users	the	option	to	query,	browse,	and	view	captured	images.	The	images	are	displayed	in	
the	centre.	In	these	images,	animals	detected	with	machine	learning	can	be	marked	with	a	green	box.	Arranged	below	the	image	are	the	label	
controls	and	previously	saved	labels.	The	labels	inferred	by	machine	learning	and	those	assigned	by	an	expert	are	also	displayed	here.
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contextual	 relevance	and	can	be	seamlessly	 integrated	with	other	
platforms.	The	use	of	standardized	metadata	formats,	for	example,	
saved	 in	 YAML	 files	 as	 in	 AudioDB	 (see	 Section	 2.4),	 RSDB,	 and	
TubeDB	 further	 ensures	 that	 any	Nature	4.0	 data	 integrated	 into	
other	projects,	or	integrated	into	the	Nature	4.0	project	from	Geo	
Engine remains consistent, discoverable, and readily understand-
able.	Furthermore,	there	are	R	packages	available	for	accessing	our	
databases	(rTubeDB,	https://	github.	com/	envir	onmen	talin	forma	tics-	
marbu	rg/	tubedb/	tree/	master/	rTubeDB;	RSDB,	https:// github. com/ 
envir	onmen	talin	forma	tics-	marbu	rg/	rsdb/	tree/	master/	r-	package).	
Within	the	R	programming	environment,	R	scripts	can,	for	example,	
aggregate	data	for	analyses,	such	as	climate	data	from	TubeDB	and	
satellite	data	from	climate	station	locations	within	the	RSDB.

2.6  |  Data transformation

In	this	section,	we	discuss	data	transformation	in	the	pre-processing	
phase	when	 classifying	 bird	 songs	 and	 bat	 echolocation	 calls	 (see	

sections “Bird species in soundscapes” and “Bat species in audio 
recordings”).

Bird	songs	are	known	to	exhibit	highly	 localized	 time	 frequen-
cies,	 that	 is,	 there	 are	 only	 a	 few	 frequencies	 contained	 in	 a	 bird	
song.	 Therefore,	 as	 the	 main	 transformation	 we	 selected	 to	 use	
the	windowed	Fourier	 transform	 (Gröchenig,	2001)	 for	 these	 two	
applications, which can be efficiently implemented to generate a 
spectrogram.	 Initially,	 raw	 spectrograms	 were	 used	 as	 input	 data	
for	 a	 classifying	 CNN	 (Heuer	 et	 al.,	 2019;	 Mühling	 et	 al.,	 2020),	
which	already	yielded	a	very	high	classification	rate	 (up	to	96.9%).	
Subsequently,	we	began	optimal	denoizing	using	thresholding	meth-
ods	followed	by	compression	of	the	spectrograms	for	the	pre-pro-
cessing	phase	(Dahlke	et	al.,	2022).

Compression	is	important	to	transmit	the	data	required	for	such	
extensive	environmental	monitoring,	which	can	be	particularly	use-
ful	when	processing	 the	 recordings	on	edge	devices.	Variations	of	
the	 windowed	 Fourier	 transform,	 such	 as	 the	 alpha-modulation	
transform,	can	also	detect	local	singularities	(e.g.,	cracking	branches)	
and are currently being investigated further.

F I G U R E  17 AudioDB.	When	reviewing	sequences	of	audio	samples	in	AudioDB,	specific	criteria	can	be	selected,	such	as	detected	
species	which	are	not	typically	present	in	that	location.	This	figure	shows	the	web	view	of	AudioDB.	On	the	left	panel,	the	“Audio	view”	
button	can	be	selected	to	display	a	spectrogram	of	the	recorded	audio.	On	the	top	bar,	the	audio	sample	selector	lets	the	user	select	a	
recording	by	location	and	time.	Below	that,	the	current	label	segment	is	selected	and	labelling	controls	are	provided.	On	the	central	panel,	
the	audio	sample	is	visualized	by	a	spectrogram.	Above	the	spectrogram	the	green	bar	represents	the	timeline,	including	a	segment	of	the	
timeline	in	red,	which	has	also	highlighted	in	red	the	corresponding	segment	of	the	spectrogram	below.	At	the	bottom,	the	saved	label	of	the	
selected audio segment is presented. Within this view, species in audio samples can be manually labelled, and machine generated labels can 
be reviewed.

https://github.com/environmentalinformatics-marburg/tubedb/tree/master/rTubeDB
https://github.com/environmentalinformatics-marburg/tubedb/tree/master/rTubeDB
https://github.com/environmentalinformatics-marburg/rsdb/tree/master/r-package
https://github.com/environmentalinformatics-marburg/rsdb/tree/master/r-package
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Here,	we	included	the	denoizing	step	for	the	spectrogram	into	
the	workflow	(Figure 19).	While	the	classification	performance	was	
not significantly improved, clear and transparent spectrograms may 
improve the interpretability of algorithms based on spectrograms.

2.7  |  Data transmission

A	central	challenge	inherent	to	transmitting	data	within	the	Nature	
4.0	 project	 is	 optimizing	 transmission	 protocols	 across	 a	 variety	
of sensor models, whilst preserving metadata and reproducibility, 
all	while	 keeping	 storage	 space	used	at	 a	minimum.	For	example,	
TreeTalker	data	are	transmitted	as	plain	text.	Plain	text	data	can	be	
transmitted	in	an	energy-efficient	manner	using	LoRa	to	local	cloud	
hubs, through which the collected data are further transmitted to 
central	 data	 servers	 via	 the	 public	mobile	 network	 (Baumgärtner	
et al., 2018).	More	 challenging	 is	 the	 transfer	 of	 audio	 and	 video	
data	due	to	their	format	and	size.	Video	and	audio	recording	devices	
typically	generate	very	large	datasets.	For	example,	15 min	of	ultra-
sonic	audio	recordings	per	hour,	24 h	per	day	from	48	AudioMoth	
devices,	yielded	5 TB	of	data	every	week.	It	is	impractical	to	wire-
lessly	transfer	such	large	quantities	of	data	from	the	field	to	central	
data servers due to time, battery, and financial constraints. Given 
these	challenges,	we	opted	to	reduce	the	quantity	of	data	recorded.

To	 reduce	 the	 quantity	 of	 data	 to	 a	 manageable	 size,	 we	 used	
event	triggers	like	those	found	in	off-the-shelf	wildlife	camera	traps.	
However,	single	device	approaches	like	this	often	fail	to	trigger	when	
small	or	fast-moving	animals	are	being	studied.	Multi	sensor	solutions	
represent a possible solution as one sensor can be used to accurately 
trigger	other	sensors	 in	 the	network.	For	example,	 the	BatRack sys-
tem	in	the	Nature	4.0	project	allows	practitioners	to	obtain	energy	and	
data-efficient	video	recordings	of	bats	because	the	cameras	are	only	
switched on, and the video signal is only recorded, if the ultrasonic 
device	detects	bats	in	the	vicinity	of	the	system	(Gottwald	et	al.,	2021).

Despite	 yielding	 a	 considerable	 reduction	 in	 the	 size	 of	 data,	 a	
substantial	quantity	 is	 still	 recorded.	These	data	 require	an	efficient	
transmission solution, as, especially in areas with a poor internet con-
nection, transmission will continue to be a major challenge in the fu-
ture	 (see	Section	3).	 In	 contrast,	 the	VHF	data	 from	animals	 can	be	
transmitted by the newly developed transmission system tRackIT 
(Gottwald	et	al.,	2019).

2.7.1  |  Android	app	for	opportunistic	
data offloading

The	 involvement	of	 the	public,	 in	 citizen	 science	 initiatives	 such	
as	 the	 Senso-Trail,	 facilitates	 additional,	 opportunistic	 ways	 to	

F I G U R E  1 8 Geo	Engine.	An	interactive	map	visualization	of	sampled	trees	in	the	Nature	4.0	project	with	supplementary	background	
information.	The	list	of	layers	is	in	the	upper	left	corner	of	the	interface.	The	second	layer	contains	the	locations	of	the	trees	examined	
within	the	Nature	4.0	project.	The	trees	are	represented	as	red	dots	in	the	map	panel.	The	background	layer	displays	the	Normalized	
difference	vegetation	index	(NDVI).	NDVI	is	often	used	to	quantitatively	assess	the	greenness	of	vegetation,	and	is	therefore	suitable	to	
determine	vegetation	density	and	evaluate	changes	in	plant	health.	Higher	NDVI	values	indicate	a	more	favourable	environment	for	trees	
to	live	in.	The	NDVI	layer	is	derived	from	a	function	of	the	fourth	and	eighth	bands	of	the	Sentinel	2	data	(layers	4	and	5	in	the	layer	list).	
Additionally,	the	NDVI	values	are	attached	to	the	trees	and	the	resulting	points	comprise	the	first	layer.	The	panel	on	the	right-hand	side	
shows	the	NDVI	of	each	tree	as	a	function	over	a	user-defined	time	period.
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F I G U R E  19 Classification	workflow:	from	audio	recordings	to	bird	species.	Following	the	acquisition	of	the	raw	soundscape	via	a	
microphone-equipped	sensor	box	(upper	left),	we	detected	sections	with	bird	songs	(upper	middle).	These	were	transformed	into	a	
spectrogram	using	the	Gabor	transform,	a	discretized	version	of	windowed	Fourier	transform	(upper	right).	The	spectrogram	was	then	
denoized	(lower	right)	and	used	as	input	in	our	convolutional	neural	network	(lower	middle)	for	the	final	classification	of	a	bird	to	the	species	
level	(lower	left).	Photos:	P.	Lampe,	M.	Michelsen.

F I G U R E  2 0 Nature	4.0	Sensing	Biodiversity	App.	The	Nature	4.0	Sensing	Biodiversity	app	prototype	provides	information	about	the	
project,	and	the	possible	interactions	of	users	with	the	sensor	network	using	their	smartphones.	Statistics	and	achievements	implement	
basic	gamification	features	to	incentivise	tasks	(e.g.,	clearing	foliage	off	a	photovoltaic	panel).



20 of 28  |     ZEUSS et al.

transport	 data	 from	 our	 sensors	 to	 our	 storage.	 This	 opportun-
istic offloading is especially useful when other communication 
networks	are	unavailable,	or	which	simply	do	not	have	sufficient	
capacity	 to	 transmit	 the	 sensor	data.	 To	demonstrate	 the	effec-
tiveness of inviting the public to facilitate the submission of our 
data,	 we	 developed	 a	 prototype	 app	 for	 Android	 smartphones,	
which	allows	users	to	use	their	phones	as	“digital	data	backpacks”	
whilst	in	the	forest.	The	app	will	ask	users	how	much	of	their	de-
vice's	 storage	 it	may	 use	 to	 facilitate	 data	 transfer.	Whenever	 a	
user is within transmission range of a sensor, it will transfer its 
data	to	the	smartphone.	Users	simply	need	to	turn	on	their	Wi-Fi,	
and	all	further	processing	is	performed	in	the	background.	The	app	
also	asks	the	user	to	select	a	home	network	 (such	as	the	WLAN	
at	home	or	university).	When	the	user's	device	is	next	connected	
to	 their	 home	 network,	 the	 data	will	 be	 automatically	 uploaded	
to	our	database.	The	prototype	also	showcases	possible	user	 in-
teractions	with	 sensor	 boxes.	 This	may	 include	 direct	 access	 to	
currently	collected	data;	or	active	participation	with	simple	tasks,	
such as removing foliage from a photovoltaic panel, assigning tags 
to	an	image	to	train	machine	learning	models;	or	even	extending	
the	range	of	available	sensors	to	the	sensor	box	for	a	short	period	
of	time,	such	as	by	taking	photos	or	measuring	ambient	light	with	
the	 smartphone.	 Statistics	 about	 user	 interaction	 and	 data	 off-
loading can be collected locally on the phone, which brings some 
basic gamification elements to the user as a possible incentive for 
long-term	involvement.	As	our	team	is	based	in	Germany,	the	app's	
user interface is written in German to more effectively target the 
wider	German	public.	However,	an	English	translation	is	available	
for	some	parts	of	the	app	(Figure 20).

2.7.2  |  Reducing	energy	consumption

To	improve	the	longevity	of	mobile	sensor	devices,	such	as	those	
mounted	on	a	deer,	energy	consumption	must	be	reduced.	A	major	
influencing	factor	is	the	transmission	of	data	to	our	database.	On	
one	 hand,	 transmitting	 the	 data	 over	 cellular	 networks	 is	 costly	
and	energy	inefficient,	in	addition	to	the	previously	described	lack	
of	cellular	coverage	in	the	forest.	On	the	other	hand,	short-range	
transmission,	 such	 as	 over	 Wi-Fi,	 requires	 opportunistic	 prob-
ing	 for	 the	 availability	 of	 a	 gateway	 (data	 sink)	 to	 the	 database.	
Therefore,	both	the	gateway	and	the	mobile	sensor	node	need	to	
have	an	active	Wi-Fi	transmitter,	which	consumes	a	large	amount	
of	 energy.	 As	 the	 remote	 sensors	 are	 battery	 powered,	 this	 re-
quirement	can	severely	impair	the	sensor's	longevity	once	it	is	de-
ployed	in	the	field.	Utilizing	GPS	or	other	GNSS	signals	in	order	to	
match	a	sensor's	position	against	the	 locations	of	the	gateway	is	
also	energy-inefficient.

To	reduce	the	sensors'	energy	consumption	while	opportunistically	
probing	 for	 gateway	 devices,	we	 developed	 a	 two-tiered	 approach	
using	both	Wi-Fi	and	LoRa	transmission	protocols	(Zobel	et	al.,	2021).	
LoRa	is	used	to	probe	for	gateway	availability	with	its	ultra-low	power	
setting.	This	 resulted	 in	a	 transmission	range	comparable	to	that	of	

Wi-Fi	in	the	same	environment.	The	gateway	responds	on	LoRa	and	
the	 node	 estimates	 if	 a	Wi-Fi	 connection	would	 be	 possible	 based	
on	the	received	signal	strength.	Only	when	expected	to	be	suitable,	
the	Wi-Fi	modules	of	both	the	mobile	sensor	node	and	the	gateway	
are	turned	on.	Subsequently,	they	connect	to	each	other,	data	is	up-
loaded	to	the	gateway,	and	the	Wi-Fi	modules	are	turned	off	again.	
To	determine	 the	 threshold	 for	 suitable	 connections,	we	measured	
the	signal	strength	for	Wi-Fi	and	LoRa	in	the	Marburg	Open	Forest	
and	 correlated	 them	with	 a	 successful	Wi-Fi	 connection	 to	 upload	
data	afterwards.	Our	evaluation	indicated	a	similar	success	rate	as	a	
location-based	approach	using	a	GPS	sensor,	but	with	significantly	re-
duced	power	consumption	(approximately	37%	less)	when	measured	
with	a	USB	multimeter,	due	to	the	omission	of	the	energy-intensive	
sensor	location	and	always-on	Wi-Fi	transmitter.

2.7.3  |  Opportunistic	networking

Particularly	 in	 areas	 with	 poor	 infrastructure,	 such	 as	 remote	 re-
search areas, the transmission of data with conventional cellular 
networks	is	not	always	possible.	Opportunistic	networks	can	enable	
transmission with the participation of researchers and members of 
the	public	who	are	passing	through	the	target	area.	In	this	process,	
data from stationary installations are transmitted to passing nodes, 
which transfer them through their movement to areas with better 
network	connections	and	then	enter	them	into	databases.	In	order	
to use this technology efficiently, the following developments were 
implemented	in	the	Nature	4.0	project:

We	have	developed	DTN7,	which	is	an	open-source	implemen-
tation	of	the	recently	released	Bundle	Protocol	Version	7	(Penning	
et al., 2019).	With	 its	modular	 design	 and	 interchangeable	 com-
ponents,	 DTN7	 facilitates	 Delay-Tolerant	 Networking	 (DTN)	 re-
search and application development. We have also developed a 
browser-based	 implementation,	 which	 empowers	 any	 user	 with	
a	 web	 browser	 to	 participate	 in	 a	 DTN	 network	 (Baumgärtner	
et al., 2019).

A	disadvantage	of	DTN	networks	is	the	limitation	of	the	return	
channel	 because	 a	 server	 cannot	 easily	 request	 data	 of	 a	 certain	
type.	 To	 compensate	 for	 these	 disadvantages,	 LoRa	 connections	
were used. We have developed an approach to facilitate remote de-
vice-to-device	communication	via	smartphones	and	 integrated	the	
LoRa	technology	into	DTN7	(Höchst	et	al.,	2020).

Finally,	 we	 developed	 an	 approach	 to	 allow	 scenario-specific	
routing	in	DTN7,	in	which	a	network	operator	can	design	a	routing	al-
gorithm tailored to the scenario where it is deployed by sharing con-
textual	information	about	both	the	bundle	and	the	node,	and	routing	
decisions	can	be	made	using	this	metadata	(Sommer	et	al.,	2022).

2.8  |  Area-wide biodiversity mapping

The	sensors	of	the	Nature	4.0	network	collect	very	large	amounts	of	
data	through	continuous	monitoring,	which	are	subsequently	stored	
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in	 our	 databases.	 These	 databases	 form	 the	 basis	 for	 biodiversity	
monitoring	 in	 the	 Nature	 4.0	 project.	 By	 opting	 for	 a	 continuous	
monitoring approach, a variety of novel remote sensing possibilities 
open	up.	For	example:	permanently	monitoring	the	drought	stress	
of trees so a monitoring structure that alerts the concerned person 
before	the	tree	suffers	 irreversible	damage	can	be	set	up.	 In	addi-
tion, the large datasets stored in our databases serve as training and 
testing	data	for	remote	sensing-based	machine	learning	methods.	As	
not	all	 trees	 in	a	 forest	 can	be	equipped	with	monitoring	devices,	
it is necessary to upscale the collected data using satellite remote 

sensing	data.	This	approach	could	enable	forest	managers	to	moni-
tor drought stress across an entire forest.

Satellite	observations	such	as	the	Sentinel	satellite	group,	GEDI,	
or	the	upcoming	BIOMASS	system,	deliver	sufficiently	high	spatial	
and	 temporal	 resolution	 (tens	 of	 metres,	 <14 days,	 respectively)	
so	 that	 the	sensor	 records	can	be	upscaled	to	area-wide	datasets.	
Furthermore,	 time	 series	 anomaly	 detection	 enables	 the	 creation	
of	an	early	warning	system.	For	smaller	areas,	such	as	the	Marburg	
Open	Forest,	CubeSat	satellites	were	adequate	in	addition	to	large-
scale	satellite	systems	such	as	GEDI,	Sentinel,	and	BIOMASS.	The	

F I G U R E  2 1 Examples	of	area-wide	mapping.	Time	series	mapping	of	volumetric	wood	water	content	(a)	and	sap	flow	(b)	in	the	Marburg	
Open	Forest.	Grey	dots	represent	the	trees	that	were	equipped	with	TreeTalkers	and	collected	the	data	used	for	upscaling.	Remote	sensing	
data	from	Sentinel-2	was	used	to	create	these	visualizations.	Data:	ESA.	(c,	d)	Area-wide	mapping	of	eight	tree	species	groups	namely	beech,	
Douglas	firs,	oak,	spruce,	pine	larch,	short-lived	deciduous	trees	(short-lived	DT),	and	long-lived	deciduous	trees	(long-lived	DT).	Each	was	
upscaled	using	a	combination	of	machine	learning	methods,	Sentinel-2,	LiDAR,	and	forest	inventory	data	for	the	whole	federal	state	of	
Hesse	in	Germany	(c),	and	the	Marburg	Open	Forest	(d).	Data:	ESA,	Hessian	Agency	for	Nature	Conservation,	Environment,	and	Geology	
(HLNUG).
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combination of these systems with autonomous sensor data is a step 
towards	near	real-time	biodiversity	monitoring.

In	addition	to	near	real-time	biodiversity	monitoring,	a	compre-
hensive ecosystem inventory is also necessary to effectively mon-
itor	 biodiversity.	 In	 the	 Nature	 4.0	 project,	 for	 example,	 the	 tree	
species	composition	 in	the	Marburg	Open	Forest	and	beyond	was	
determined using machine learning methods in order to be able to 
better	assess	the	forest's	suitability	as	a	habitat	for	different	species.	
This	was	 done	 using	 a	 time	 series	 from	 Sentinel-2	 in	 conjunction	
with	LiDAR	data	(Figure 21).

The	 same	 quantitative	 methods	 used	 to	 upscale	 data	 on	 tree	
stands	can	also	be	applied	to	animal	models,	such	as	bats.	The	optimal	
characteristics	of	bat	habitats	are	already	well	understood	making	bats	
an ideal model organism for upscaling, as it will be clearer which areas 
should	be	designated	for	protection	(Gottwald	et	al.,	2022).	Moreover,	
in	the	Nature	4.0	project,	the	species	distribution	modelling	software,	
spatialMaxent,	was	developed	to	create	models	that	consider	spatial	
autocorrelation	in	the	training	data	(Bald	et	al.,	2023).

3  |  CONCLUSIONS

The	 Nature	 4.0	 project's	 modular	 structure,	 comprising	 sensors,	
data	 transmission,	and	data	storage,	allows	for	 flexibility	and	scal-
ability in monitoring a wide range of species and ecosystems. By 
incorporating both static and mobile sensors, the project captured 
detailed information about species populations, traits, and commu-
nity	compositions	that	would	otherwise	be	difficult	 to	obtain.	The	
extensive	 datasets	 this	 project	 has	 generated	 were	 essential	 for	
training and testing machine learning models, which were used in 
conjunction with remote sensing data to monitor and map indirect 
biodiversity measures.

Nevertheless,	to	advance	networked	sensor	systems	for	future	
integrated biodiversity monitoring, interdisciplinary collaboration 
will	 be	 essential.	 Our	 experiences	 in	 the	Nature	 4.0	 project	 have	
highlighted ten major challenges that need to be addressed to better 
understand and mitigate the ongoing loss of biodiversity while en-
suring the sustainable management of ecosystems and the provision 
of ecosystem services.

3.1  |  Workload and costs

Networked	 sensor	 systems	 for	 biodiversity	 monitoring	 must	 be	
cost	 effective	 and	 time	 efficient.	 Commercial	 sensors	 can	 be	 ex-
pensive, particularly when used to comprehensively cover large 
study	areas.	However,	a	nascent	 trend	towards	using	open-source	
sensors,	built	from	off-the-shelf	consumer	electronics,	continues	to	
provide	interesting	new	possibilities	(Baumgärtner	et	al.,	2018).	This	
approach both reduces costs, and also facilitates rapid sensor de-
velopment	while	leveraging	a	wider	range	of	experts'	participation.	
Furthermore,	 customizable	 sensor	 components	 can	 be	 easily	 ex-
changed	as	needed.	Cost-efficient	sensor	systems	will	allow	broader	

access to technology, enabling biodiversity monitoring in remote 
and	hard-to-reach	areas.

3.2  |  Energy consumption and storage demands

To	enhance	the	operational	lifespan	of	networked	sensor	systems	that	
are	 used	 for	 integrated	 biodiversity	 monitoring,	 minimizing	 energy	
consumption	and	storage	requirements	will	be	essential.	The	use	of	
energy-efficient	sensors	and	renewable	energy	sources,	such	as	solar	
power, can help reduce energy consumption and operational costs, 
particularly in remote areas where access to electricity may be limited. 
Additionally,	 the	 implementation	 of	 intelligent	 power	 management	
systems,	like	the	camera	network	developed	by	Abas	et	al.	(2018),	can	
adapt	to	the	available	energy	 levels,	extending	the	system's	 lifetime	
by	reducing	maintenance	requirements.	Therefore,	incorporating	sus-
tainable energy sources and efficient power management modules in 
networked	sensor	systems	can	substantially	improve	the	practicality	
of biodiversity monitoring in various environments.

3.3  |  Data accuracy and quality

Networked	sensor	systems	must	generate	precise	and	accurate	data	
for effective and reproducible biodiversity monitoring. Ensuring the 
accuracy of data collected can be challenging as maintaining sensor 
calibration,	the	sensor's	sensitivity	to	environmental	conditions,	and	
potential biases introduced by the monitoring methods can all dis-
tort	the	final	dataset.	Therefore,	continuous	evaluation	and	valida-
tion of the data through comparisons with in situ field observations 
or	other	 reliable	sources	are	essential	 to	maintain	data	quality.	An	
open-source	approach	can	facilitate	collaboration	and	transparency	
in this process.

3.4  |  Positional accuracy

Researchers and practitioners often report difficulties when try-
ing	to	obtain	accurate	coordinates	using	GNSS.	To	overcome	these	
difficulties,	we	deployed	a	reference	network	using	a	total	station.	
The	total	station	provided	improved	positional	accuracy,	albeit	in	a	
relatively	 small	 area	due	 to	 the	 labour-intensive	 setup	process.	 In	
the	future,	we	will	explore	innovative	solutions	for	enhancing	posi-
tional	accuracy	over	larger	areas,	such	as	the	Marburg	Open	Forest.	
One	potential	approach	 involves	utilizing	a	UAS	equipped	with	an	
advanced	GNSS	receiver	and	prism,	which	could	provide	high-accu-
racy coordinates by communicating with the total station.

3.5  |  Artificial intelligence

With	 the	 increase	 in	 data	 collection,	AI	 can	help	 to	 automate	 the	
data analysis process with machine and deep learning methods. 



    |  23 of 28ZEUSS et al.

However,	this	will	also	require	an	understanding	of	the	biases	that	
can be inherent within the dataset or design of the model being 
used,	and	consequently,	fair	consideration	of	the	ethical	implications	
this	raises.	Overall,	AI	will	be	a	valuable	tool	to	improve	the	accuracy	
and	efficiency	of	biodiversity	monitoring,	which	will	 subsequently	
support more comprehensive biodiversity monitoring.

3.6  |  Data privacy and ethical considerations

Deploying	networked	sensor	systems	in	natural	environments	raises	
potential data privacy concerns, particularly if the remote sensors 
capture image or sound data. Guaranteeing data privacy and ad-
dressing ethical considerations are essential to maintain the pub-
lic's	trust	towards	monitoring	programmes,	and	the	development	of	
this	technology	as	a	whole.	This	may	involve	developing	guidelines	
for responsible data collection, storage, and sharing, in addition to 
engaging	with	stakeholders	and	local	communities	to	address	their	
concerns.

3.7  |  Interoperability and standardization

As	networked	sensor	systems	continue	to	advance,	the	current	lack	
of	 standardized	 protocols	 for	 data	 collection,	 storage,	 and	 analy-
sis becomes increasingly limiting. By promoting interoperability 
across the current variety of sensor systems and data formats, the 
research community can facilitate the integration of data from di-
verse	sources,	which	will	help	to	support	collaboration	and	knowl-
edge	sharing	among	researchers	and	practitioners.	Each	discipline's	
scientific community should establish unified standards for meta-
data to enhance the consistency of data and facilitate collaboration. 
Standardization	also	supports	the	creation	of	open-source	tools	and	
platforms for data processing and analysis, further advancing biodi-
versity	monitoring	efforts,	while	adhering	to	the	FAIR	data	principles	
(Wilkinson	et	al.,	2016).

3.8  |  Collaboration and knowledge sharing

Collaboration	 and	 knowledge	 sharing	 across	 disciplines	 is	 vital	 to	
disentangle and combat the nuanced factors which lead to biodiver-
sity	 loss.	Developing	and	implementing	networked	sensor	systems	
for	 integrated	biodiversity	monitoring	will	 require	the	 involvement	
of	experts	 from	various	 fields,	 such	as	ecology,	engineering,	 com-
puter science, and data science. By fostering collaboration and shar-
ing best practices, researchers and practitioners can benefit from 
diverse perspectives and the latest technical developments, acceler-
ating	the	advancement	of	networked	sensor	technologies	and	their	
integration	 into	 conservation	 practice.	 Furthermore,	 promoting	
partnerships	 between	 academia,	 governmental	 organizations,	 and	
non-governmental	organizations	will	naturally	bring	research,	policy,	

and practice into alignment, thereby enhancing the broader effec-
tiveness of conservation efforts.

3.9  |  Public engagement and education

Raising	 the	public's	awareness	and	understanding	about	 the	 impor-
tance	 of	 biodiversity	 conservation,	 and	 the	 power	 networked	 sen-
sor systems have to monitor ecosystems will be imperative to build 
support for monitoring and conservation programmes in the future. 
Engaging	with	local	communities,	stakeholders,	and	the	broader	pub-
lic can help to foster an appreciation for the natural environment, 
and	the	exciting	technology	being	used	in	cutting	edge	conservation	
programmes.	 Through	hosting	 a	 range	of	 educational	 programmes,	
workshops,	and	outreach	activities	researchers	can	highlight	the	ben-
efits	of	networked	 sensor	 systems,	demonstrate	 their	 practical	 ap-
plications,	and	encourage	public	participation	through	citizen	science	
initiatives. By actively involving the public in biodiversity monitoring 
efforts, and nurturing an attitude towards stewardship of the natural 
environment,	networked	sensor	systems	can	contribute	to	better	in-
formed and collaborative conservation strategies, which will lead to 
better outcomes for ecosystems, and the species that inhabit them.

3.10  |  Real-time data processing

As	networked	sensor	systems	generate	vast	amounts	of	data	from	
the many sensors in the field, the ability to process and analyse this 
data	 in	 real-time	 becomes	 increasingly	 important.	 Real-time	 data	
processing can enable timely identification of emerging trends or 
threats to biodiversity, allowing for more rapid and effective con-
servation	 actions.	 However,	 achieving	 real-time	 data	 processing	
requires	 the	 development	 of	 new,	 more	 efficient	 algorithms	 and	
an	advanced	computing	network	 that	 is	capable	of	processing	 the	
diversity	and	volume	of	data	 that	networked	sensor	systems	typi-
cally	produce.	To	overcome	this	challenge	will	require	collaboration	
between computer scientists, data analysts, and ecologists to design 
and	 implement	 cutting-edge	 data	 processing	 methods,	 which	 will	
yield meaningful insights about ecosystem health, and support deci-
sion	makers	to	manage	conservation.

Networked	sensor	systems	need	to	develop	further	as	integrated	
biodiversity monitoring approaches become increasingly necessary 
to understand and address biodiversity loss, and to ensure sustain-
able management of ecosystems and the provision of their services. 
However,	 the	challenges	outlined	above	highlight	 the	need	for	 fu-
ture research and practical solutions in this field in order to improve 
their capability and versatility for researchers and practitioners. We 
would	like	to	reiterate	the	increasing	need	to	develop	and	pool	our	
efforts	 across	 new	 interdisciplinary	 research	workflows,	 including	
computer	science,	ecology,	engineering,	and	data	science,	to	make	
networked	 sensor	 systems	 for	 integrated	 biodiversity	 monitoring	
robust,	cost-effective,	and	accurate.
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