115 research outputs found

    Dark matter search experiment with CaF2(Eu) scintillator at Kamioka Observatory

    Get PDF
    We report recent results of a WIMP dark matter search experiment using 310g of CaF2(Eu) scintillator at Kamioka Observatory. We chose a highly radio-pure crystal, PMTs and radiation shields, so that the background rate decreased considerably. We derived limits on the spin dependent WIMP-proton and WIMP-neutron coupling coefficients, a_p and a_n. The limits excluded a part of the parameter space allowed by the annual modulation observation of the DAMA NaI experiment.Comment: 11 pages, 4 figure

    Bringing bioelectricity to light: all-optical electrophysiology using microbial rhodopsins

    Get PDF
    My work has focused on the development and application of fluorescent voltage-sensitive proteins based on microbial rhodopsins. These probes led to the discovery of electrical activity in the bacterium Escherichia coli, the first robust optical recordings of action potentials (APs) in mammalian neurons using a genetically encoded voltage reporter, and the development of a genetically targetable all-optical electrophysiology system. I first introduce an engineered fluorescent voltage sensor based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated. I then present another microbial rhodopsin, Archaerhodopsin 3 (Arch), whose endogenous fluorescence exhibited a twofold increase in brightness between -150 mV and +150 mV and a sub-millisecond response time. In rat hippocampal neurons, Arch detected single electrically triggered APs with an optical signal-to-noise ratio > 10. A mutant, Arch(D95N), lacked endogenous proton pumping and had 50% greater sensitivity than the wild type but had a slower response (41 ms). Nonetheless, Arch(D95N) also resolved individual APs. Finally, I introduce evolved archaerhodopsin-based voltage indicators and a spectrally orthogonal channelrhodopsin actuator, which together enabled all-optical electrophysiology. A directed evolution screen yielded two mutants, QuasAr1 and QuasAr2, that showed improved brightness and voltage sensitivity relative to previous archaerhodopsin-based sensors, and microsecond response times. An engineered channelrhodopsin actuator, CheRiff, showed high light sensitivity and rapid kinetics. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured neurons, the Optopatch system probed membrane voltage across temporal and spatial scales, from the sub-cellular and sub-millisecond dynamics of AP propagation, to the simultaneous measurement of firing patterns of many neurons in a circuit. In brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. In human stem cell-derived neurons, Optopatch measurements revealed homeostatic tuning of intrinsic excitability, a subtle form of plasticity that had yet to be observed in human neurons. The suite of tools and techniques presented here enable high-throughput, genetically targeted, and spatially resolved electrophysiology without the use of conventional electrodes.Engineering and Applied Science

    Simulation of Special Bubble Detectors for PICASSO

    Full text link
    The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerized gel. This detection technique is based on the phase transition of superheated droplets at about room temperature and ambient pressure. The phase transition is induced by nuclear recoils when an atomic nucleus in the droplets interacts with incoming subatomic particles. This includes CDM particles candidate as the neutralino (a yet-to-discover particle predicted in extensions of the Standard Model of particle physics). Simulations performed to understand the detector response to neutrons and alpha particles are presented along with corresponding data obtained at the Montreal Laboratory.Comment: 13 pages, 4 figures. To appear in the Proceedings of the 14th International Conference on Solid State Dosimetry, June 27 - July 2 2004, Yale University, New Haven, CT, US

    The background in the neutrinoless double beta decay experiment GERDA

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q-bb is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha emitting isotopes from the 226Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known gamma peaks, the energy spectrum can be fitted in an energy range of 200 kev around Q_bb with a constant background. This gives a background index consistent with the full model and uncertainties of the same size

    A Search for the Dark Matter Annual Modulation in South Pole Ice

    Get PDF
    Astrophysical observations and cosmological data have led to the conclusion that nearly one quarter of the Universe consists of dark matter. Under certain assumptions, an observable signature of dark matter is the annual modulation of the rate of dark matter-nucleon interactions taking place in an Earth-bound experiment. To search for this effect, we introduce the concept for a new dark matter experiment using NaI scintillation detectors deployed deep in the South Pole ice. This experiment complements dark matter search efforts in the Northern Hemisphere and will investigate the observed annual modulation in the DAMA/LIBRA and DAMA/NaI experiments. The unique location will permit the study of background effects correlated with seasonal variations and the surrounding environment. This paper describes the experimental concept and explores the sensitivity of a 250 kg NaI experiment at the South Pole.Comment: FERMILAB-PUB-11-251-A

    Grafted Human Embryonic Progenitors Expressing Neurogenin-2 Stimulate Axonal Sprouting and Improve Motor Recovery after Severe Spinal Cord Injury

    Get PDF
    7 p.Background: Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats.Methods and Principal Findings: With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naive or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naive hENPs is detrimental to functional recovery.Conclusions and Significance: Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naive-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for SCI patients.This study was supported by the European Union FP6 "RESCUE" STREP; the "Institut pour la Recherche sur la Moelle Epiniere"; the "Academie de Medecine"; the "Societe Francaise de Neurochirurgie"; "Verticale" and the "Association Demain Debout Aquitaine". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Mimicking the Neurotrophic Factor Profile of Embryonic Spinal Cord Controls the Differentiation Potential of Spinal Progenitors into Neuronal Cells

    Get PDF
    Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT)-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively
    corecore