736 research outputs found

    Design and validation of Segment - freely available software for cardiovascular image analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format.</p> <p>Results</p> <p>Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page <url>http://segment.heiberg.se</url>.</p> <p>Conclusions</p> <p>Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.</p

    Comparing "challenge-based" and "code-based" internet voting verification implementations

    Get PDF
    Internet-enabled voting introduces an element of invisibility and unfamiliarity into the voting process, which makes it very different from traditional voting. Voters might be concerned about their vote being recorded correctly and included in the final tally. To mitigate mistrust, many Internet-enabled voting systems build verifiability into their systems. This allows voters to verify that their votes have been cast as intended, stored as cast and tallied as stored at the conclusion of the voting period. Verification implementations have not been universally successful, mostly due to voter difficulties using them. Here, we evaluate two cast as intended verification approaches in a lab study: (1) "Challenge-Based" and (2) "Code-Based". We assessed cast-as-intended vote verification efficacy, and identified usability issues related to verifying and/or vote casting. We also explored acceptance issues post-verification, to see whether our participants were willing to engage with Internet voting in a real election. Our study revealed the superiority of the code-based approach, in terms of ability to verify effectively. In terms of real-life Internet voting acceptance, convenience encourages acceptance, while security concerns and complexity might lead to rejection

    Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Get PDF
    An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT) are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas

    Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area

    Get PDF
    Marine protected areas (MPAs) are considered viable fisheries management tools due to their potential benefits of adult spillover and recruitment subsidy to nearby fisheries. However, before–after control–impact studies that explore the biological and fishery effects of MPAs to surrounding fisheries are scarce. We present results from a fine-scale spatial gradient study conducted before and after the implementation of a 5 km2 lobster MPA in southern Norway. A significant nonlinear response in lobster abundance, estimated as catch-per-unit-effort (CPUE) from experimental fishing, was detected within 2 years of protection. After 4 years, CPUE values inside the MPA had increased by a magnitude of 2.6 compared to before-protection values. CPUE showed a significant nonlinear decline from the centre of the MPA, with a depression immediately outside the border and a plateau in fished areas. Overall fishing pressure almost doubled over the course of the study. The highest increase in fishing pressure (by a magnitude of 3) was recorded within 1 km of the MPA border, providing a plausible cause for the depression in CPUE. Taken together, these results demonstrate the need to regulate fishing pressure in surrounding areas when MPAs are implemented as fishery management tools.publishedVersio

    Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today.</p> <p>Methods</p> <p>Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations.</p> <p>Results</p> <p>Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects.</p> <p>Conclusion</p> <p>Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle tracing that may lead to a better understanding of blood flow and may improve diagnosis and prognosis of cardiovascular diseases.</p

    An evaluation of seasonal variations in footwear worn by adults with inflammatory arthritis: a cross-sectional observational study using a web-based survey

    Get PDF
    Background: Foot problems are common in adults with inflammatory arthritis and therapeutic footwear can be effective in managing arthritic foot problems. Accessing appropriate footwear has been identified as a major barrier, resulting in poor adherence to treatment plans involving footwear. Indeed, previous New Zealand based studies found that many people with rheumatoid arthritis and gout wore inappropriate footwear. However, these studies were conducted in a single teaching hospital during the New Zealand summer therefore the findings may not be representative of footwear styles worn elsewhere in New Zealand, or reflect the potential influence of seasonal climate changes. The aim of the study was to evaluate seasonal variations in footwear habits of people with inflammatory arthritic conditions in New Zealand. Methods: A cross-sectional study design using a web-based survey. The survey questions were designed to elicit demographic and clinical information, features of importance when choosing footwear and seasonal footwear habits, including questions related to the provision of therapeutic footwear/orthoses and footwear experiences. Results: One-hundred and ninety-seven participants responded who were predominantly women of European descent, aged between 46–65 years old, from the North Island of New Zealand. The majority of participants identified with having either rheumatoid arthritis (35%) and/or osteoarthritis (57%) and 68% reported established disease (>5 years duration). 18% of participants had been issued with therapeutic footwear. Walking and athletic shoes were the most frequently reported footwear type worn regardless of the time of year. In the summer, 42% reported wearing sandals most often. Comfort, fit and support were reported most frequently as the footwear features of greatest importance. Many participants reported difficulties with footwear (63%), getting hot feet in the summer (63%) and the need for a sandal which could accommodate a supportive insole (73%). Conclusions: Athletic and walking shoes were the most popular style of footwear reported regardless of seasonal variation. During the summer season people with inflammatory arthritis may wear sandals more frequently in order to accommodate disease-related foot deformity. Healthcare professionals and researchers should consider seasonal variation when recommending appropriate footwear, or conducting footwear studies in people with inflammatory arthritis, to reduce non-adherence to prescribed footwear

    A new multi-zone model for porosity distribution in Al–Si alloy castings

    Get PDF
    A new multi-zone model is proposed that explains how porosity forms in various regions of a casting under different conditions and leads to distinct zonal differences in pore shape, size and distribution. This model was developed by considering the effect of cooling rate on solidification and distribution of porosity in Al–Si alloys cast as plates in moulds made with silica, ilmenite or zirconia sand cores or steel chills facing the major plate faces. The alloys cast were Al–7 wt.% Si and Al–12.5 wt.% Si in unmodified and modified forms, the latter with either Na or Sr addition. It is found that, regardless of cooling condition, Si content and modification treatment, the microstructure can be divided into three zones of varying size (across the casting thickness) that are determined by the local cooling conditions and the nucleation and growth mode of the Al–Si eutectic. The zones are: (1) an outer shell-like zone where directional columnar dendritic grains and a fine-celled, coherent eutectic form a low-porosity shell at the casting surface; (2) a transitional zone where equiaxed, eutectic cells grow between columnar dendritic grains and irregular pores become trapped in the mush; and finally (3) a central zone where the thermal gradient is low and equiaxed dendritic grains and eutectic cells grow at the centre of the casting and larger, rounded pores tend to form. The paper discusses how Si content, modification type and cooling conditions influence the location and size (i.e. depth) of each of these zones and how the distribution of porosity is thus affected

    Head-to-head comparison of aggressive conventional therapy and three biological treatments and comparison of two de-escalation strategies in patients who respond to treatment : study protocol for a multicenter, randomized, open-label, blinded-assessor, phase 4 study

    Get PDF
    Background: New targeted therapies and improved treatment strategies have dramatically improved the outcomes of patients with rheumatoid arthritis (RA). However, it is unknown whether different early aggressive interventions can induce stable remission or a low-active disease state that can be maintained with conventional synthetic disease-modifying antirheumatic drug (csDMARD) therapy, and whether they differ in efficacy and safety. The Nordic Rheumatic Diseases Strategy Trials And Registries (NORD-STAR) study will assess and compare (1) the proportion of patients who achieve remission in a head-to-head comparison between csDMARD plus glucocorticoid therapy and three different biological DMARD (bDMARD) therapies with different modes of action and (2) two de-escalation strategies in patients who respond to first-line therapy. Methods/design: In a pragmatic, 80-160-week, multicenter, randomized, open-label, assessor-blinded, phase 4 study, 800 patients with early RA (symptom duration less than 24 months) are randomized 1: 1: 1: 1 to one of four different treatment arms: (1) aggressive csDMARD therapy with methotrexate + sulphasalazine + hydroxychloroquine + i. a. glucocorticoids (arm 1A) or methotrexate + prednisolone p.o. (arm 1B), (2) methotrexate + certolizumab-pegol, (3) methotrexate + abatacept, or (4) methotrexate + tocilizumab. The primary clinical endpoint is the proportion of patients reaching Clinical Disease Activity Index (CDAI) remission at week 24. Patients in stable remission over 24 consecutive weeks enter part 2 of the study earliest after 48 weeks. Patients not achieving sustained CDAI remission over 24 consecutive weeks, exit the study after 80 weeks. In part 2, patients are re-randomized to two different de-escalation strategies, either immediate or delayed (after 24 weeks) tapering, followed by cessation of study medication. All patients remain on stable doses of methotrexate. The primary clinical endpoint in part 2 is the proportion of patients in remission (CDAI Discussion: NORD-STAR is the first investigator-initiated, randomized, early RA trial to compare (1) csDMARD and three different bDMARD therapies head to head and (2) two different de-escalation strategies. The trial has the potential to identify which treatment strategy to apply in early RA to achieve the best possible outcomes for both patients and society.Peer reviewe

    Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model.</p> <p>Methods</p> <p>Pigs were randomized to pre-reperfusion hypothermia (n = 7), post-reperfusion hypothermia (n = 7) or normothermia (n = 5). A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI.</p> <p>Results</p> <p>Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8%) compared to post-reperfusion hypothermia (80 ± 6%, p < 0.05) and by 39% compared to normothermia (75 ± 5%, p < 0.05). Pre-reperfusion hypothermia infarctions were patchier in appearance with scattered islands of viable myocardium. Pre-reperfusion hypothermia abolished (0%, p < 0.001), and post-reperfusion hypothermia significantly reduced microvascular obstruction (10.3 ± 5%; p < 0.05), compared to normothermia: (30.2 ± 5%).</p> <p>Conclusion</p> <p>Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application.</p
    corecore