27 research outputs found

    Fasting and postprandial remnant-like particle cholesterol concentrations in obese participants are associated with plasma triglycerides, insulin resistance, and body fat distribution

    Get PDF
    Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial state, using multiple regression analyses in a large cohort of lean and obese participants. All participants (n = 740) underwent a test meal challenge containing 95 energy % (en%) fat (energy content 50% of predicted daily resting metabolic rate). Fasting and postprandial concentrations of circulating metabolites were measured over a 3-h period. Obese participants (n = 613) also participated in a 10-wk weight loss program (-2510 kJ/d), being randomized to either a low-fat or a high-fat diet (20-25 vs. 40-45en% fat). Postprandial RLP-C was associated with fasting RLP-C, waist:hip ratio (WHR), HOMA(IR) (homeostasis model assessment index for insulin resistance) (P < 0.001), and age, independently of BMI and gender [adjusted R(2) (adj. R(2)) = 0.70). These factors were also related to fasting RLP-C (P < 0.010), along with gender and physical activity (adj. R(2) = 0.23). The dietary intervention resulted in significantly lower fasting RLP-C concentrations, independently mediated by weight loss, improvements in HOMA(IR), and the fat content of the prescribed diet. However, after inclusion of plasma triglyceride (TG), HDL-cholesterol, and FFA concentrations in the models, HOMA(IR) and WHR no longer significantly predicted fasting RLP-C, although WHR remained a predictor of postprandial RLP-C (P = 0.002). Plasma TG was strongly associated with both fasting and postprandial RLP-C (P < 0.001). In conclusion, plasma RLP-C concentrations are mainly associated with plasma TG concentrations. Interestingly, the high-fat diet was more effective at decreasing fasting RLP-C concentrations in obese participants than the low-fat diet

    Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014–2018 national laboratory surveillance

    Get PDF
    Objectives: Carbapenem resistance mediated by mobile genetic elements has emerged worldwide and has become a major public health threat. To gain insight into the molecular epidemiology of carbapenem resistance in The Netherlands, Dutch medical microbiology laboratories are requested to submit suspected carbapenemase-producing Enterobacterales (CPE) to the National Institute for Public Health and the Environment as part of a national surveillance system. Methods: Meropenem MICs and species identification were confirmed by E-test and MALDI-TOF and carbapenemase production was assessed by the Carbapenem Inactivation Method. Of all submitted CPE, one species/carbapenemase gene combination per person per year was subjected to next-generation sequencing (NGS). Results: In total, 1838 unique isolates were received between 2014 and 2018, of which 892 were unique CPE isolates with NGS data available. The predominant CPE species were Klebsiella pneumoniae (n = 388, 43%), Escherichia coli (n = 264, 30%) and Enterobacter cloacae complex (n = 116, 13%). Various carbapenemase alleles of the same carbapenemase gene resulted in different susceptibilities to meropenem and this effect varied between species. Analyses of NGS data showed variation of prevalence of carbapenemase alleles over time with blaOXA-48 being predominant (38%, 336/892), followed by blaNDM-1 (16%, 145/892). For the first time in the Netherlands, blaOXA-181, blaOXA-232 and blaVIM-4 were detected. The genetic background of K. pneumoniae and E. coli isolates was highly diverse. Conclusions: The CPE population in the Netherlands is diverse, suggesting multiple introductions. The predominant carbapenemase alleles are blaOXA-48 and blaNDM-1. There was a clear association between species, carbapenemase allele and susceptibility to meropenem

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Mechanisms of nitrogen isotope fractionation at an ancient black smoker in the 2.7 Ga Abitibi greenstone belt, Canada

    Get PDF
    The biological nitrogen (N) cycle on early Earth is enigmatic because of limited data from Archean (meta-)sediments and the potential alteration of primary biotic signatures. Here we further investigate unusual 15N enrichments reported in 2.7 Ga meta-sediments from the Abitibi greenstone belt, Canada, purportedly related to a 15N-enriched Archean atmosphere. Given that sediments from this region are contemporaneous with large-scale volcanogenic massive sulfide deposits, we utilize Cu and Zn contents to trace the effects of hydrothermal circulation on N isotope fractionation. We show that high δ15Nbulk values as high as +23‰ are associated with Cu-Zn mineralization, whereas unmineralized organic-rich shales exhibit much lower δ15Nbulk and δ15Nkerogen values. Moreover, we find a large offset between δ15Nbulk and δ15Nkerogen of as much as 17‰ and relate this to the addition of organic-bound N during the late-stage emplacement of organic-rich veins. We conclude that the previously reported high δ15N values are most parsimoniously explained by biotic and abiotic mechanisms rather than a 15N-enriched atmosphere. Crucially, both mechanisms require the presence of NH4+ in hydrothermal fluids, supporting the hypothesis that hydrothermal discharge was an important nutrient source for Neoarchean marine life

    Impact of dietary fat quantity and quality on skeletal muscle fatty acid metabolism in subjects with the metabolic syndrome

    Get PDF
    Insulin resistance is characterized by disturbances in lipid metabolism in skeletal muscle. Our aim was to investigate whether gene expression and fatty acid (FA) profile of skeletal muscle lipids are affected by diets differing in fat quantity and quality in subjects with the metabolic syndrome (MetS) and varying degrees of insulin sensitivity. 84 subjects (age 57.3+/-0.9 y, BMI 30.9+/-0.4 kg/m(2), 42 M/42 F) were randomly assigned to one of four iso-energetic diets: high-SFA (HSFA); high-MUFA (HMUFA) or two low-fat, high-complex carbohydrate diets, supplemented with 1.24 g/day of long-chain n-3 PUFA (LFHCCn-3) or control oil (LFHCC) for 12 weeks. In a subgroup of men (n=26), muscle TAG, DAG, FFA and phospholipid contents were determined including their fractional synthetic rate (FSR) and FA composition at fasting and 4h after consumption of a high-fat mixed-meal, both pre- and post-intervention. Genes involved in lipogenesis were downregulated after HMUFA (mean fold change -1.3) and after LFHCCn-3 (fold change -1.7) in insulin resistant subjects (&lt; median of (S(I))), whereas in insulin sensitive subjects (&gt;median of insulin sensitivity) the opposite effect was shown (fold change +1.6 for both diets). HMUFA diet tended to decrease FSR in TAG (P=.055) and DAG (P=.066), whereas the LFHCCn-3 diet reduced TAG content (P=.032). In conclusion, HMUFA and LFHCCn-3 diets reduced the expression of the lipogenic genes in skeletal muscle of insulin resistant subjects, whilst HMUFA reduced the fractional synthesis rate of DAG and TAG and LFHCC n-3 the TAG content. Our data indicate that these diets may reduce muscle fat accumulation by affecting the balance between FA synthesis, storage and oxidation
    corecore