502 research outputs found

    A visit to Gunung Nyiut in West Kalimantan

    Get PDF
    Almost no ornithological fieldwork has been done in the montane regions of Kalimantan in recent decades (Holmes & Burton 1987). We spent 10 days from 28 August to 6 September 1986 observing birds in Gunung Nyiut Wildlife Refuge, West Kalimantan (110(1 E, 1°N) and hope that our records . will contribute to the distributional knowledge of the avifauna of Borneo

    Differential pain-related behaviors and bone disease in immunocompetent mouse models of myeloma

    Get PDF
    Bone pain is a serious and debilitating symptom of multiple myeloma (MM) that impairs the quality of life of patients. The underlying mechanisms of the pain are unknown and understudied, and there is a need for immunocompetent preclinical models of myeloma‐induced bone pain. The aim of this study was to provide the first in‐depth behavioral characterization of an immunocompetent mouse model of MM presenting the clinical disease features: osteolytic bone disease and bone pain. We hypothesized that a widely used syngeneic model of MM, established by systemic inoculation of green fluorescent protein‐tagged myeloma cells (5TGM1‐GFP) in immunocompetent C57Bl/KaLwRijHsd (BKAL) mice, would present pain‐related behaviors. Disease phenotype was confirmed by splenomegaly, high serum paraprotein, and tumor infiltration in the bone marrow of the hind limbs; however, myeloma‐bearing mice did not present pain‐related behaviors or substantial bone disease. Thus, we investigated an alternative model in which 5TGM1‐GFP cells were directly inoculated into the intrafemoral medullary cavity. This localized myeloma model presented the hallmarks of the disease, including high serum paraprotein, tumor growth, and osteolytic bone lesions. Compared with control mice, myeloma‐bearing mice presented myeloma‐induced pain‐related behaviors, a phenotype that was reversed by systemic morphine treatment. Micro‐computed tomography analyses of the myeloma‐inoculated femurs showed bone disease in cortical and trabecular bone. Repeated systemic bisphosphonate treatment induced an amelioration of the nociceptive phenotype, but did not completely reverse it. Furthermore, intrafemorally injected mice presented a profound denervation of the myeloma‐bearing bones, a previously unknown feature of the disease. This study reports the intrafemoral inoculation of 5TGM1‐GFP cells as a robust immunocompetent model of myeloma‐induced bone pain, with consistent bone loss. Moreover, the data suggest that myeloma‐induced bone pain is caused by a combinatorial mechanism including osteolysis and bone marrow denervation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research

    Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs

    Get PDF
    The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1,2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5]

    Enabling Passive Immunization as an Alternative to Antibiotics for Controlling Enteric Infections in Production Animals

    Get PDF
    Enteric infections cause major problems in most intensive animal production sectors, including poultry, pigs and cattle, leading to disease, reduced production and compromised welfare. In addition some of these infections are zoonotic, and they are to a large extent responsible for the continued massive use of antibiotics in food animals. Thus there is a pressing need for economically feasible, efficient, non-antibiotics based means for controlling the problem. Passive immunization has been known for decades as an efficient way of endowing humans or animals with short-term (weeks) immunity. To control enteric infections by passive immunization a bolus of immunoglobulin may simply be administered orally. For this to work, large amounts of active immunoglobulins are needed. To be a real alternative to antibiotics the price of the immunoglobulin product needs to be low. We combined an efficient and mild high-capacity method for extracting immunoglobulins directly from raw materials like milk, whey and blood plasma with a novel method for stabilizing activity. In a first experiment a total of 15 kg unstabilized bovine immunoglobulin was purified from whey (35.000 liters) and administered to colostrum-deprived calves (225-300 g pr calf during the first 24 hours after birth). No difference in resulting immunoglobulin serum concentration, weight gain or disease frequency were seen in this group of calves compared to a control group given full access to high-quality colostrum. The effect of orally administered bovine immunoglobulin is currently being tested in a calf herd with persistent diarrhea problems. Furthermore, it was shown in a Campylobacter challenge model in chickens that caecal and faecal counts of Campylobacter were between 0.5 and 1.0 logs lower in birds when given 200 mg avian immunoglobulins orally together with the challenge (at day 21 of age) compared to a placebo group receiving immunoglobulin with no reactivity against Campylobacter. While clearly preliminary, these results show that immunoglobulin can be produced from renewable sources at a price enabling passive immunization as a viable strategy for control of infectious diseases in the intensive animal production, with the potential to significantly reduce antibiotics consumption

    Bone pain in multiple myeloma (BPMM) — a protocol for a prospective, longitudinal, observational study

    Get PDF
    Multiple myeloma (MM) is a bone marrow neoplasia that causes bone pain in 70% patients. While preclinical models of MM have suggested that both nerve sprouting and nerve injury may be causative for the pain, there is a lack of clinical data. Thus, the primary aims of this clinical study are: (1) to provide a deep characterization of the subjective experience of pain and quality of life in MM patients; (2) to investigate disturbances in the bone innervation of MM patients. Secondary aims include exploring correlations between pain and serum inflammatory and bone turnover biomarkers. In a prospective, observational study (clinicaltrials.gov: NCT04273425), patients with suspected MM requiring a diagnostic iliac crest biopsy at Sheffield Teaching Hospital (UK) are invited to participate. Consenting patients answer seven standardized questionnaires assessing pain, quality of life and catastrophizing. Bone turnover biomarkers and inflammatory cytokines are measured in fasting serum samples, and bone innervation is evaluated in diagnostic biopsies. MM patients are invited to a follow-up upon completion of first line treatment. This will be the first deep characterization of pain in MM patients and its correlation with disturbances in bone innervation. Understanding how bone turnover and inflammation correlate to pain in MM is crucial to identify novel analgesic targets for this condition

    Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    Get PDF
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future

    Metastatic Infiltration of Nervous Tissue and Periosteal Nerve Sprouting in Multiple Myeloma-Induced Bone Pain in Mice and Human

    Get PDF
    Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP+) and growth associated protein 43 (GAP43+) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief. MM patient samples also showed increased periosteal innervation. Mechanistically, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone of male mice and found alterations in pathways associated with cell cycle, immune response and neuronal signaling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP. Interestingly, the transcriptional signature of a MM patient was consistent with MM cell infiltration to the DRG. Overall, our results suggest that MM induces a plethora of peripheral nervous system alterations that may contribute to the failure of current analgesics and suggest neuroprotective drugs as appropriate strategies to treat early onset MIBP.SIGNIFICANCE STATEMENT Multiple myeloma (MM) is a painful bone marrow cancer that significantly impairs the quality of life of the patients. Analgesic therapies for myeloma-induced bone pain (MIBP) are limited and often ineffective, and the mechanisms of MIBP remain unknown. In this manuscript, we describe cancer-induced periosteal nerve sprouting in a mouse model of MIBP, where we also encounter metastasis to the dorsal root ganglia (DRG), a never-before described feature of the disease. Concomitant to myeloma infiltration, the lumbar DRGs presented blood vessel damage and transcriptional alterations, which may mediate MIBP. Explorative studies on human tissue support our preclinical findings. Understanding the mechanisms of MIBP is crucial to develop targeted analgesic with better efficacy and fewer side effects for this patient population

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16â€ČN, 4°59â€ČW, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund
    • 

    corecore