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Abstract

The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin
and host range [1,2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918;
H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and
veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become
established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In
combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have
shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection
dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host
adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig
populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably,
following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin
receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact
infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable
pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential
clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918
pandemic [5].
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Introduction

In April 2009, an H1N1 virus was detected in humans [1] that

was described as putatively of swine origin since seven of the eight

gene segments originated from historical swine influenza viruses [2].

Further cases of infection of humans with this virus in the absence of

direct contact with pigs were rapidly described together with proven

human-to-human transmission. Although the virus ostensibly

derived from pig populations, the consequences of infection in

swine were unknown. The role of pigs in the epidemiology of

influenza has been well described [3], although their direct

involvement in the genesis of a pandemic influenza virus strain

has never been demonstrated. Following reverse zoonosis (spread of

virus from humans to animals) into pig populations, viruses are

subjected to different selection pressures and evolve in distinct

lineages, enabling clear separation from their counterpart strains

circulating in humans. During the last ten years, substantial changes

have been noted in the epidemiology of influenza in pigs,

particularly with reference to significant geographical variations in

terms of the virus subtypes and their associated genotypes. The

pandemic (H1N1) 2009 virus shows genetic and antigenic distance

in the major glycoproteins of the virus compared to contempora-

neous swine strains [2]. Therefore, important questions are raised

regarding pigs given their well-established linkage in the evolution

and ecology of influenza viruses.

In this study, using an established infection and transmission

model [6,7], we address the outcomes, infection dynamics and

pathogenesis of H1N1/09 virus infection in non-immune pigs.

PLoS ONE | www.plosone.org 1 February 2010 | Volume 5 | Issue 2 | e9068

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wageningen University & Research Publications

https://core.ac.uk/display/29238462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Results

Clinical Signs
Clinical signs were detectable in all of the pigs (100% morbidity)

infected directly (INF) via the intranasal route or contact exposed

(TC) (Methods), with variations in the range, pattern and severity

between individuals although all pigs apparently recovered. The

signs induced remained typical of influenza A infections in pigs

(see Text S1 and Table S1).

The onset of clinical disease was characterised by elevations in

rectal temperature and serous, bilateral nasal discharge between

1–3 days post-infection (dpi), generally coincident with the onset

and maintenance of nasal virus shedding (Fig. 1A). In pigs that

were INF, peak rectal temperatures in individual animals

(.39.5uC) ranged from dpi 1–5 (modal value dpi 2), with mean

rectal temperatures peaking from dpi 3–8. Biphasic rectal

temperatures profiles were observed in some animals (3/4 infected

pigs remaining from dpi 5 onwards; 5/8 in-contacts), interspersed

by a substantial temperature reduction ($1uC) in some individual

animals below the mean control animal rectal temperature

(38.0uC). Highly significant differences between the overall mean

rectal temperatures of the INF, TC and control animals (P,0.001)

were also observed. Furthermore, variations were apparent in the

overall peak and intervals to peak rectal temperatures recorded for

the in-contact pigs, the mean clinical scores (per day post-

exposure) between INF and TC pigs, and in daily live weight gain

comparing INF, TC and control pigs (Text S1 and Figures S2 and

S3).

Other observed clinical signs included bilateral serous ocular

discharge, coughing with an increased respiratory rate, lethargy

and inappetence. The observed initial serous nasal discharge

progressed to be mucoid and then muco-purulent in nature by dpi

4 in the remaining infected and contact exposed pigs, with

discharge resolving in survivors by dpi 10–16.

Virus Shedding
Shedding was measured in all samples through the detection of

viral RNA in quantitative real-time RT-PCR. By the use of a

standard curve (on each test plate) generated from a dilution series

of infectious H1N1/09 virus quantitated in standard infectivity

titrations, we were able to determine the relative equivalent unit

(REU) from viral RNA based upon the cycle threshold (CT) value

obtained for each sample. Virus shedding was detected from all of

Figure 1. Semi-quantitative H1N1/09 virus shedding. Shedding from infected (INF) and transmission cycle (TC) pigs from the nasal (a), oral (b)
and ocular (c) routes. Shedding expressed as (REU log10; mean + SE). Relative equivalent units (REU) represent an equivalent viral infectivity titre
related to RRT-PCR threshold cycle (Ct) values. dpi/dpc refers to days post infection/contact.
doi:10.1371/journal.pone.0009068.g001
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the INF pigs, mainly via the nasal route (Fig. 1). Peak nasal

shedding (3–4 REU log10) occurred between 4–6 dpi, with

intermittent, low level shedding (1–2 REU log10) from dpi 10–

15, and ceased from dpi 16 (Fig. 1A).

All uninfected pigs exposed by contact with infected pigs during

the four successive transmission cycles (see Methods: Groups TC1,

TC2, TC3 and TC4) developed broadly similar trajectories of

infection to the directly infected pigs (Figure S4). Furthermore,

irrespective of exposure mode, all pigs shed similar amounts of

virus from the nasal route (Fig. 1A). In contrast, overall lower

levels of shedding, but with similar trajectories to that of the nasal

cavity were detected from the oral (Fig. 1B) and ocular (Fig. 1C)

routes (individual pigs peak range for either route was 1.5–3.0

REU log10). Rectal shedding was rare, detected on just three

occasions (peak 2.3 REU log10) from two infected animals (INF,

3245 and 3261) only (at dpi 2–5). In-contact pigs (TC1-TC4)

developed similar infection and nasal (Figure S4), oral and ocular

shedding profiles to INF pigs (Fig. 1). However, variations were

evident in the intervals to both the onset and peak of nasal

shedding between TC groups (see Text S1).

Transmission Cycle Shedding Patterns
The onset of nasal shedding was detected from one day post-

contact (dpc 1) for all pigs in Groups TC1, TC2, and TC3, and

from dpc 2 during TC4. Variations were also evident between

contact transmission groups in the interval to and duration of peak

nasal shedding, and the total duration of nasal shedding (Figure

S4). During TC1, nasal shedding from the pair of exposed pigs

peaked at dpc 3–6, with an overall duration of 7 days and 10 days

respectively. Similarly, during TC2, peak nasal shedding was

detected at dpc 6, with no further shedding after dpc 12–13.

Overall nasal shedding from the exposed pigs during TC3 was

detected for longer (dpc 14). However, the interval to peak nasal

shedding was similar to that in TC1 and TC2 (dpc 4–6). Peak

nasal shedding was detected at dpc 3–4 during TC4, with no

detectable shedding via the nasal cavity from dpc 9.

These data also show that the contact period required for

successful transmission of virus to both pigs, as determined by the

detection of nasal shedding and a mean REU .1.5 log10 (at which

point the TC was initiated), was 72 hours for TC1, TC2 and TC4.

Interestingly, during TC3, a period of four days was required for

these criteria to be fulfilled. In addition, during TC1 and TC4,

peak shedding was 2–3 days earlier than in TC2 and TC3.

However, overall the interval to onset and the duration of peak

shedding was broadly similar in the infected and all of the contact

exposed (TC1-TC4) pigs (Figure S4, panel F).

Serology
At the start of the study the seronegative status of all animals

was confirmed by haemagglutination inhibition (HI) test using four

swine influenza virus subtypes (classical H1N1, avian-like swine

H1N1, swine H1N2 and human-like swine H3N2) and A/

California/07/2009(H1N1)v. During the study, samples were

tested using A/California/07/2009(H1N1)v only. Two of four

INF animals seroconverted by dpi 7, with substantial homologous

HI titres (80 and 320) detected from the two pigs (3245, 3261) that

remained in the study beyond that point. The eight TC animals

seroconverted between 10–14 dpc, with peak HI titres in the range

40–640 from 14–18 dpc.

Acute Phase Protein (APP) Responses
Selected APP responses were measured in serum samples

collected from infected animals, specifically C-reactive protein and

haptoglobin. Infection kinetics were supported by increases above

the acute phase response threshold [8,9] in the levels of both APPs

over time (dpi/dpc) in all of the infected pigs (Figure S5). The C-

reactive protein levels peaked at dpi/dpc 4 with more protracted

responses detected after dpi/dpc 7 in one of the remaining infected

pigs (3261) and the in-contact animals. The haptoglobin responses

were more protracted, peaking at dpi/dpc 9–11 in both infected

and TC pigs.

Pathology
Pathological changes in infected pigs (including by contact

exposure) were restricted to the respiratory tract and associated

lymphoid tissues. At 3 and 4 dpi or dpc, pulmonary lesions

comprised multifocal, cranioventral, lobular consolidation, in-

creasing in number and extension at dpi/dpc 7, when the cranial

and middle lung lobes appeared almost entirely consolidated

(Fig. 2A and Text S1). For full details of histopathological and

immunohistochemistry (IHC) findings see Text. S1 In summary

histopathology revealed moderate to severe necrotising bronchi-

olitis, atelectasis and alveolitis followed by hyperplasia of airway

epithelium as regeneration occurred in some lobules from day 7

which resolved by day 17 (Fig. 2C). The pigs were derived from a

‘PRRSV free’ source and the histopathological findings were not

considered to indicate the presence of other pathogens. Further-

more, we have shown that live virus (mediated through virus re-

isolation), viral antigen (detected using IHC) and viral RNA

(detected by modified influenza A Matrix gene real time RT-PCR)

were detectable in respiratory and associated lymphoid tissues

from dpi 1–7 and dpc 11, but was not detected in examples of

consumer commodities such as meat (longissimus dorsi and biceps

femoris) or viscera (Table 1). This is in addition to the absence of

viral RNA in plasma samples collected from directly infected

animals and contact exposed pigs, consistent with no detectable

viraemia.

Sequencing and Genetic Analyses
Full genome sequence analysis was conducted for selected nasal

swab RNA samples from four infected animals (3244, 3245, 3260,

3261) and both contact exposed pigs in each TC group between

days 3–6 (dpi/dpc). The lowest Ct values were selected

representing a REU log10 range of 2.3–4.1 (Table 2). There were

no significant deviations from the inoculum sequence observed for

all the genes encoding internal proteins and the neuraminidase

gene in either directly infected or TC animals. No molecular

markers for pathogenicity (e.g. PB2 E627K) were detected.

Haemagglutinin (HA1) gene mutations observed throughout the

study are described in Table 2 (see Text S1).

The HA sequence data for the inoculum (egg passage 5) was

identical to the published sequence for egg grown (egg passage 2)

isolate A/California/07/2009(H1N1)v (GenBank accession:

FJ969540) containing a mixture of two amino acids at positions

225 and 226 (H3 numbering), D/G and R/Q respectively. Upon

infection in pigs, 226Q was selected, but 225D/G remained

present. For contact animals, 226Q remained and, in addition,

225D was selected for (Table 2). HA1 sequencing was also

conducted on a small subset of middle lung lobe tissue samples

from directly infected pigs in order to assess variation in receptor

tropism and possible relationship to pathogenesis. Of the four

middle lung lobe samples analysed, all four had 226Q. Two

samples (ex INF pigs dpi 1 and dpi 2) showed a dual population of

225D/G, whilst the two other samples (ex INF pigs dpi 4 and dpi

7) showed 225G (Table 2, Figure S6). Furthermore, it is interesting

to note that the latter samples from INF pigs containing 225G in

HA1 also had REU’s .6.0 (Table 2) suggestive of efficient

replication at this site.

Pandemic H1N1 in Pigs
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Table 1. Qualitative results for the detection of virus in tissues collected from challenged or contact exposed pigs by virus re-
isolation, immunohistochemistry (IHC) and RRT- PCR.

Pig ID PME Group Turbinate Naso-pharynx
Thoracic
Trachea Lung lobes

Lymph
Nodes*

Cranial Mid Caudal Accessory

3242 Day 3 Mock 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 2/2

3249 dpi 2 INF +/+/+ +/2/+ 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 2/2

3252 dpi 2 INF +/+/+ +/2/+ +/2/+ 2/2/2 +/+/+ +/2/+ +/2/+ 2/+

3246 dpi 3 INF +/+/+ 2/2/+ +/2/2 +/2/+ +/+/+ +/2/+ 2/2/+ 2/2

3243 dpi 4 INF +/+/+ +/2/+ +/+/+ +/+/+ +/+/+ +/+/+ +/+/+ 2/+

3260 dpi 7 INF +/+/+ 2/+/2 +/+/+ +/+/+ +/+/2 +/+/+ +/+/+ 2/+

3244 dpi 7 INF +/2/+ +/2/2 2/2/2 2/+/+ +/+/2 2/+/+ +/+/+ 2/+

3257 dpc 11 TC4 2/2/+ 2/2/2 2/2/2 2/2/+ 2/2/2 2/+***/+ 2/2/2 2/2

2/2/2 = Virus re-isolation/IHC/PCR.
*Lymph nodes, IHC: Superficial inguinal, lateral retropharyngeal**, medial retropharyngeal, right, middle and left tracheobronchial**, mediastinal and mesenteric (Virus
re-isolation and PCR only).

Other: Commodities and offal - spleen, liver, kidney and ileum plus muscle (longissimus dorsi and biceps femoris) were all negative when tested by virus re-isolation &
PCR.
***Only in cell debris in lumen of three bronchioles (no bronchial or bronchiolar epithelial or macrophage immunolabelling).
Shaded rows represent a mock-infected control animal from the equivalent of dpi 3 and a transmission cycle (TC4) animal at 11 days post-contact (dpc) representing for
comparative purposes the closest animal to the direct infected group PMEs.
doi:10.1371/journal.pone.0009068.t001

Figure 2. Pathological changes (a,c) and immunohistochemical detection of viral antigen. a. Lung. In-contact animal (TC4), 11 dpc.
Multiple dark red areas of cranioventral pulmonary consolidation in the cranial and middle lung lobes. b. Nasal mucosa, 2 dpi. Influenza A
nucleoprotein (brown) in numerous respiratory epithelial cells 20x. c. Lung, 7 dpi. Marked attenuation of bronchiolar epithelium due to epithelial cell
necrosis, bronchiolar plug and peribronchiolar lymphohistiocytic infiltration. Haematoxylin and eosin 40x. d. Lung, 4 dpi. Viral nucleoprotein in
abundant bronchiolar epithelial cells and cellular debris in the bronchiolar lumen and in several pulmonary alveolar macrophages 20x.
doi:10.1371/journal.pone.0009068.g002
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Discussion

In this study we have shown that pigs can be readily infected

with pandemic (H1N1) 2009 virus (A/California/07/09), resulting

in the induction of clinical signs, viral pathogenesis restricted to the

respiratory tract, infection dynamics consistent with endemic

strains of influenza A in pigs, virus transmissibility between pigs

(four cycles) and virus-host adaptation events.

The type and pattern of clinical signs and induced host

responses were consistent with those typical of swine influenza

virus [10], including the infection dynamics, characterised by

shedding from the upper respiratory tract. Rectal shedding was

only rarely detected potentially reflecting a lack of tropism for

replication in the alimentary tract (Table 1) that was further

supported by the lack of immunolabelled enterocytes in the ileum

(note the possibility of contamination of the perineum with nasal

discharge cannot be excluded due the natural inquisitive and social

behaviour of pigs). In addition, the onset of clinical disease was

preceded by elevations in rectal temperature, and biphasic rectal

temperature profiles were observed in some animals (3/4 infected

pigs remaining from dpi 5 onwards; 5/8 in-contacts), a clinical

feature often observed during influenza infections [11–13]. The

measurement of selected APP responses provided further confir-

mation of infection dynamics. It is recognised that the porcine APP

response to infection is typically characterised by elevations in

serum levels of C-reactive protein as the major APP [14]. Our data

supports this observation, and furthermore we have shown that C-

reactive protein responses are higher in infected pigs than in TC1-

TC4 pigs (Figure S5), and were more elevated in the infected and

TC1 animals than the later transmission cycles.

Furthermore, our results clearly demonstrate that extant

H1N1/09 is fully capable of becoming established in global pig

populations. We have also shown that a 72-hour contact period

within the first six days of infection is sufficient to establish virus

spread in an experimental setting. We have used determinations of

precise levels of viral RNA related to approximations of infectious

virus which also enabled the analysis of large datasets derived from

intensive sampling. However, further study would be required to

refine the transmission window, and it is also important to note

that events may differ in a field setting. For example, the observed

levels of morbidity and mortality may differ depending on the role

played by other inter-current infections and/or pig husbandry and

management factors that could also result in more severe

economic impacts to the swine industry. Interestingly, the limited

natural occurrences of early field infections of pigs were relatively

mild [15–17]. Similarly, whilst infection dynamics in a field setting

will be different through availability and numbers of both

susceptible and infected pigs, it could be reasonably expected that

Table 2. HA1 locations at which amino acid changes were observed in directly infected and contact pigs.

Animal status Pig ID HA1 REU (log
10)

(dpi/dpc) Location

225 226

Inoculum: Not applicable X* (D/G) X (R/Q)

Infected:

3261 (3 dpi) X (D/G) Q 3.37

3261 (4 dpi) X (D/G) Q 3.43

3244 (5 dpi) X (D/G) Q 3.60

3245 (5 dpi) - - 3.91

3260 (5 dpi) X (D/G) Q 2.88

3261 (5 dpi) X (D/G) Q 4.12

3261 (6 dpi) X (D/G) Q 3.32

In-contacts:

TC1 3240 (3 dpc) - - 3.66

TC1 3254 (3 dpc) D Q 4.16

TC2 3250 (5 dpc) - - 3.36

TC2 3256 (6 dpc) D Q 3.91

TC3 3258 (5 dpc) D Q 2.33

TC3 3259 (5 dpc) D Q 2.31

TC4 3247(5 dpc) - - 2.93

TC4 3257 (4 dpc) D Q 3.41

Infected: Middle lung lobe

3253 (1 dpi) X (D/G) Q 4.38

3252 (2 dpi) X (D/G) Q 3.88

3243 (4 dpi) G Q 6.83

3260 (7 dpi) G Q 6.21

Virus derived from nasal swabs unless otherwise stated. H3 numbering [ref. 27] is used in the table and throughout the text. Where a mixed population was observed
this is represented by an X with the possible mixture of amino acids described in parentheses. Dash indicates sequence data not available. Semi-quantitative nasal
H1N1/09v virus shedding (REU log10).
doi:10.1371/journal.pone.0009068.t002

Pandemic H1N1 in Pigs

PLoS ONE | www.plosone.org 5 February 2010 | Volume 5 | Issue 2 | e9068



H1N1/09 will transmit efficiently in immunologically naı̈ve

farmed pig populations.

The pathogenesis described in this study is consistent with that

of infections with endemic swine influenza viruses [10,18,19]. Our

results with H1N1/09 were more severe than those obtained in

mini-pigs [20], but similar to experiments performed in 10-week-

old commercial pigs [21]. This variability may be related to virus

strain, but more possibly due to breed of pig with this study using a

breed commonly reared on a commercial scale. Overall, clinical

signs and pathology were of much greater severity than those

caused by infections with avian influenza viruses, such as highly

pathogenic H5N1 or low pathogenic viruses of different subtypes,

in pigs infected experimentally [22–24]. Furthermore they were

broadly similar to those in small mammals infected with pandemic

(H1N1) 2009 virus [20,25–26]. Whilst we used pigs sourced from a

high health herd and the histopathological findings did not

indicate the presence of other pathogens, we did not further

exclude intercurrent infections other than by close reference to the

control pigs.

In this study we observed an apparent host selection within the

H1N1/09 population based upon the haemagglutinin (HA1) gene

as the virus replicated in directly infected pigs and transmitted to

contact exposed pigs (Table 2). Influenza virus HA is the surface

protein involved in binding host cell sialic acid in order to initiate

infection, and the specificity of the HA binding depends on the

virus and host species, with human and swine viruses preferentially

binding a2,6-linked sialyl receptors whereas avian viruses bind

a2,3-linked sialyl receptors [reviewed in ref 27].

For technical reasons we used egg-grown A/California/07/

2009 (H1N1)v at passage level 5 for the direct infection of pigs.

The HA gene sequencing of virus inoculum revealed that it differs

from the original virus, A/California/07/2009 (GenBank acces-

sion numbers: FJ966974, FJ969540 and FJ981613)[2] through the

presence of a mixture of two amino acids at HA positions 225 and

226 (H3 numbering, [27]), D/G and R/Q, respectively. We

assume that the inoculum was a mixture of quasispecies of a wild

type virus (HA, 225D/226Q) [2] and at least two egg-derived

mutants (HA, 225G and HA, 226R). The mutation Q226R has

been observed previously in egg-adapted seasonal human H1N1

viruses [28,29]. Isolates with 226R grow well in vitro, but are

thought to be severely impaired in vivo [29]. The data presented

here supports this hypothesis, since the 226R variant was absent

from all viruses examined from infected pigs (Table 2).

A mutation G225D/E in the HA of H1N1 viruses is known to

be important for the alteration of the viral receptor specificity

during adaptation of avian viruses to humans and pigs [5,30,31].

Interestingly, studies with the 1918 pandemic H1N1 virus describe

it as circulating as a mixture of variants with either 225D or 225G

[5], but the biological significance of this heterogeneity remains

unknown. Both variants infected ferrets, but transmission of the

variant with 225G was not as efficient as for variant 225D [29].

Our data for H1N1/09 are consistent with this finding in that all

viruses detected in nasal secretions from the contact exposed pigs

(TC1-TC4) possessed 225D (Table 2), indicating that it appears

more transmissible than variant 225G.

Glycine at HA position 225 of human and swine H1N1 viruses

enhances virus binding to a2,3 receptors without markedly

compromising ability to bind to a2,6 receptors [27,30,31].

Although non-egg-adapted swine and seasonal human H1N1

viruses typically display 225D/E [27,30], here we show possible

selection of the 225G in affected middle lung lobe tissue from a

small subset of samples from directly infected pigs, potentially

indicative of different selection pressure within this compartment

compared to cells of the upper respiratory tract (Table 2, Figure

S6) even though cells of the lower respiratory tract of pigs express

both a2,3 and a2,6 receptors [4]. These findings demonstrate the

roles of viral receptor specificity in both transmission and tissue

tropism providing potential clues to the existence and biological

significance of viral receptor-binding variants with 225D and

225G during the 1918 pandemic [5].

We have shown that pigs are susceptible to infection with

H1N1/09 and incursion from infected humans to the farmed pig

population appears likely. However, the impact of such transmis-

sion will be compounded by a number of variables that we were

not able to address in the current study, such as prior immunity to

H1 influenza viruses, age of animal, husbandry factors, including

production type, and intercurrent disease. Close monitoring of

global pig populations is required if the dynamic is to be fully

understood, as is further virus evolution to allow assessment of

human and veterinary health risks.

Our results on different selective pressures in the upper and

lower respiratory epithelium in pigs provide further insights into

host selection preferences and may suggest possible differences in

relation to transmissibility and pathogenesis within the same

animal. In particular, this finding prompts further studies on the

enigma of co-circulation of two receptor-binding variants of the

1918 pandemic virus and on their relative role in pathogenesis.

Methods

This work was approved by the VLA ethics committee for

animal studies and was carried out in accordance with the UK

1986 Animal Scientific Procedure Act and VLA code of practice

for performance of scientific studies using animals (available on

request). Furthermore, these guidelines meet the requirement for

the European Directive for Animal Experimentation (86/609).

Study Design
The infection and transmission study comprised twenty-two

Landrace hybrid pigs, aged 4–5 weeks old at the outset, randomly

allocated to six separate study groups (Figure S1). All of the pigs

were sourced from a high health status herd (PRRS virus free) and

were shown to be both influenza A virus and antibody (subtypes

H1N1, H1N2, H3N2) negative by Matrix (M) gene real time RT-

PCR (described below) and haemagglutination inhibition (HI)

assays [32] respectively prior to the start of the study. Infection was

initially established in a group of eleven pigs by intra-nasal

inoculation with a total dose of 105.8 EID50 A/California/07/

2009(H1N1)v, delivered in a final volume of 2 ml per nostril, using

a mucosal atomisation device (MADH Nasal, Wolfe Tory Medical,

Inc.) to mimic aerogenous infection. The virus strain (A/

California/07/2009(H1N1v) was propagated in embryonated

fowls’ eggs (passage history, egg passage 5).

In addition to the group of infected pigs (INF), four successive

transmission cycles (TC1-TC4) were established between infected

and naı̈ve pigs at monitored intervals (once sustained nasal

shedding from both of the pigs in each cycle was confirmed). TC1

was established by placing two naı̈ve contact exposed pigs with

infected pigs at dpi 2. With nasal shedding detected from the pair

of TC1 pigs, they were removed to a separate room to establish

TC2, by infection of a second pair of naı̈ve pigs. Two further

transmission cycles were then established between successive pairs

of infected and naı̈ve, contact exposed pigs (TC3, TC4). Three

uninfected pigs were maintained as a control group (Controls), two

of which were mock-inoculated and one was non-inoculated. The

mock-inoculated pigs were challenged by the intra-nasal route

using allantoic fluid suspended and delivered in a final volume of

2 ml PBS per nostril, using the same method as the infected pigs.
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Clinical Measurements and Sampling
Each day throughout the duration of the study (25 days) clinical

parameters were assessed by veterinary inspections, with swab

samples (nasal, ocular, oral and rectal) collected. The swabs were

then immediately tested by a modified influenza A M gene real-

time RT (RRT)-PCR assay (described below), enabling confirma-

tion of pig infection and shedding status (Fig. 1 and Figure S4). In

addition to the daily procedures and sampling conducted for each

of the directly infected pigs (INF), control animals (Controls) were

swabbed on three occasions, equivalent to dpi 0, 6 and 20. The

same types of swab sample were also collected on a daily basis

from each contact exposed pig (TC1-4) from the first day of their

respective transmission cycles and processed daily for M gene

RRT-PCR testing.

Blood Samples and Assays
Blood samples were collected by jugular venepuncture from all

of the pigs prior to the start of the study, and from the directly

infected pigs up to dpi 4, and again at dpi 7 for assessment of

viraemia, acute phase protein responses and antibody production

(described below). Blood samples for were then collected twice

weekly from infected pigs, and the contact exposed pigs (TC1-

TC4) as they were recruited to the study during the successive

transmission cycles, with collection of terminal blood samples from

all remaining pigs prior to euthanasia (Figure S5).

Haemagglutination Inhibition (HI) Assay
Haemagglutinin specific antibodies were detected in pig sera

using HI tests performed according to standard methods [32] with

A/California/07/09 as antigen.

Acute Phase Protein (APP) Responses
C-reactive protein and haptoglobin responses were measured in

serum as previously described [8,9] using a commercially available

ELISA assay, according to manufacturers instructions (Tridelta

Development Ltd., Kildare, Ireland) (see Protocol S1).

Post-Mortem Examination (PME)
At defined intervals infected pigs were removed for post-mortem

examination, with systematic recording of macroscopic findings

and collection of a range of tissues for histopathology and virus

detection assays (Table 1). Pairs of infected pigs (INF) were subject

to PME on dpi 2, 3, 4 and 7, with one infected pig PME on each of

dpi 1, dpi 17 and dpi 21. Further PMEs were performed on

contact exposed pigs on dpi 21 and dpi 25 (Figure S1). A full range

of tissue specimens was collected, with selected fresh tissue samples

(Table 1) stored at 270uC. Samples collected for histopathology

and IHC were stored in 10% (v/v) phosphate-buffered formalin

pending final processing (described below) and analysis.

Virus Detection in Tissues
Virus detection (Table 1) was performed by IHC, M gene RRT-

PCR (PCR), and virus re-isolation in 9–11 day old embryonated

fowls’ eggs [32] (two eggs per sample for each passage, with a total

of two passages). Frozen tissues were thawed and a 10%

homogenate prepared in PBS with antibiotics [14] using a

powered homogeniser system (Omni homogenizer (GLH), using

Omni TipTM Plastic Generator Probes (hard tissue); Omni

International, Marietta, GA, USA). Debris was removed by

centrifugation (10 minutes at ,1500 g) and the supernatant

collected and passed through a 0.8 mm sterile filter (Satorius Ltd.,

Goettingen, Germany) prior to RNA extraction or virus re-

isolation. Clarified material was then inoculated into embryonated

fowls’ eggs and the presence of virus determined by the

haemagglutination of chicken erythrocytes [32]. The same tissue

homogenate supernatant was used for the PCR assay (described

below).

Matrix (M) Gene RRT-PCR
Total RNA was extracted from swine clinical specimens (above)

as previously described, including a positive extraction control that

was prepared to yield a pre-determined Ct value [33]. The

modified M gene RRT-PCR utilised the forward primer and

probe described originally by Spackman et al [34] at final

concentrations of 0.4 mM and 0.3 mM respectively, but the reverse

primer consisted of an equimolar mixture of the original reverse

primer plus a reverse primer modified to provide a perfect

sequence match with the pandemic (H1N1) 2009 virus, typified by

A/California/07/2009(H1N1)v (accession number: FJ966975).

The four altered nucleotides in the modified reverse primer are

indicated in upper case: 59-tgc aaa Gac aCT ttc Cag tct ctg-39.

The final concentration of each of the reverse primers was 0.2 mM.

Cycling conditions, temperatures and chemistry details were as

outlined for the M gene RRT-PCR [35]. RNA extracted from a

titrated allantoic fluid preparation of A/California/07/

2009(H1N1)v was used to construct a ten-fold dilution series.

This served to calibrate the Ct values derived from testing

extracted clinical specimens by the modified M gene RRT-PCR

with an equivalent viral infectivity titre [35] that is expressed in

relative equivalent units (REU) [33].

Histopathology and Immunohistochemistry
Following PME, all phosphate-buffered formalin-fixed samples

were routinely embedded in paraffin wax. 4 mm thick sections, cut

on a rotary microtome, were stained with haematoxylin and eosin

or used for IHC detection of influenza A nucleoprotein by the

avidin-biotin-peroxidase complex method [33] (see Protocol S1).

Sequencing and Genetic Analyses
RNA was extracted from inoculum, swab or tissue samples

(Table 2) using the QIAamp Viral RNA Kit (Qiagen). Genes were

reverse transcribed and amplified using the OneStep RT-PCR Kit

(Qiagen) (Primers available on request). RT-PCR products were

excised from agarose gels and purified using the QIAquick Gel

Extraction Kit (Qiagen). DNA was sequenced using the Prism

BigDye Terminator v3.1 Cycle Sequencing Kit on the 3130

Genetic Analyzer (Applied Biosystems). All commercial kits were

used following manufacturer’s instructions. The Lasergene pack-

age (DNASTAR) was used for nucleotide sequence analysis and

alignment. Full genome sequencing and further detailed genetic

analyses were performed to compare the inoculum strain and

selected output viruses (Table 2, Figure S6).

Statistical Analyses
Descriptive data includes mean and standard deviation within

the text. Mean and standard error of the mean are shown in

graphical formats. Clinical scores, weights, temperatures and

shedding levels were analysed using analysis of variance (one-way

ANOVA with 95% confidence intervals) in the Minitab software

package (Release 14).

Supporting Information

Protocol S1

Found at: doi:10.1371/journal.pone.0009068.s001 (0.03 MB

DOC)
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Text S1

Found at: doi:10.1371/journal.pone.0009068.s002 (0.04 MB

DOC)

Table S1 Clinical scoring system for influenza A challenge in

pigs.

Found at: doi:10.1371/journal.pone.0009068.s003 (0.03 MB

DOC)

Figure S1 Study plan including timeline (date and day post-

infection), animal numbers, post-mortem examinations (PME),

transmission cycles (TC) and animal movements. An unplanned

PME was carried out on pig 3261 dpi 17 on welfare grounds.

Found at: doi:10.1371/journal.pone.0009068.s004 (0.07 MB

DOC)

Figure S2 Mean daily rectal temperature (oC) plus standard

errors for infected (INF), transmission cycle (TC) and control (C)

pigs.

Found at: doi:10.1371/journal.pone.0009068.s005 (0.07 MB

DOC)

Figure S3 Mean live weight gain (kg) plus standard errors for

infected (INF), transmission cycle (TC) and control (C) pigs.

Found at: doi:10.1371/journal.pone.0009068.s006 (0.72 MB

DOC)

Figure S4 Semi-quantitative nasal H1N1/09v virus shedding

(REU log10; mean + SE) from infected (INF, panel A) and

transmission cycle (TC, panels B–E) pigs. Panel F is the combined

data (A–E).

Found at: doi:10.1371/journal.pone.0009068.s007 (3.91 MB

DOC)

Figure S5 Acute Phase Protein responses, mean C-Reactive

protein (A) and Haptoglobin (B), for infected (INF) and

transmission cycle (TC) pigs.

Found at: doi:10.1371/journal.pone.0009068.s008 (0.03 MB

DOC)

Figure S6 HA receptor selection. Figure shows a representative

sequence chromatogram covering codons 225 and 226 (H3

numbering, [ref. 20]) for the inoculum, nasal swabs from directly

infected pigs (INF) and contact exposure transmission cycle (TC1-

4) isolates, and for two variations observed between middle lung

lobe tissues at 1/2 dpi and 4/7 dpi. Amino acid and nucleotide

sequences are shown above and below the trace respectively.

Positions where a mixed amino acid population is observed are

represented by an X.

Found at: doi:10.1371/journal.pone.0009068.s009 (0.09 MB

DOC)
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