5 research outputs found
Chemotherapy‐induced release of ADAM17 bearing EV as a potential resistance mechanism in ovarian cancer
Abstract Ovarian cancer (OvCa) is the gynaecological disorder with the poorest prognosis due to the fast development of chemoresistance. We sought to connect chemoresistance and cancer cell‐derived extracellular vesicles (EV). The mechanisms of how chemoresistance is sustained by EV remained elusive. One potentially contributing factor is A Disintegrin and Metalloprotease 17 (ADAM17)—itself being able to promote chemoresistance and inducing tumour cell proliferation and survival via the Epidermal Growth Factor Receptor (EGFR) pathway by shedding several of its ligands including Amphiregulin (AREG). We now demonstrate that upon chemotherapeutic treatment, proteolytically active ADAM17 is released in association with EV from OvCa cells. In terms of function, we show that patient‐derived EV induce AREG shedding and restore chemoresistance in ADAM17‐deficient cells. Confirming that ADAM17‐containing EV transmit chemoresistance in OvCa, we propose that ADAM17 levels (also on EV) might serve as an indicator for tumour progression and the chemosensitivity status of a given patient
Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2
A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model
