204 research outputs found

    Estimation of local extreme suspended sediment concentrations in California Rivers

    Get PDF
    International audienceThe total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40–60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable

    High CD8+ T Cell Activation Marks a Less Differentiated HIV-1 Specific CD8+ T Cell Response that Is Not Altered by Suppression of Viral Replication

    Get PDF
    The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag-specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28-) phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27-CD28-), low activation phenotype. Participants with the highest fraction of late memory (CD27-CD28-) HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004). In turn, those with the highest fraction of intermediate memory (CD27+ CD28-) HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01), indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile

    Making science at home: visual displays of space science and nuclear physics at the Science Museum and on television in postwar Britain

    Get PDF
    The public presentation of science and technology in postwar Britain remains a field open to exploration. Current scholarship on the topic is growing but still tends to concentrate on the written word, thus making theorizing, at this stage, difficult. This paper is an attempt to expand the literature through two case studies that compare and synthesize displays of scientific and technological knowledge in two visual media, the Science Museum and television, in the 1950s and 1960s. The topics of these case studies are space exploration and nuclear energy. The thesis this paper explores is that both media fleshed out strategies of displays based on the use of categories from everyday life. As a result, outcomes of large-scale public scientific and technological undertakings were interwoven within audiences’ daily life experiences, thus appearing ordinary rather than extraordinary. This use of symbols and values drawn from private life worked to alleviate fears of risk associated with these new fields of technological exploration and at the same time give them widespread currency in the public sphere

    Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae

    Get PDF
    Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Technopolitics

    No full text
    corecore