75 research outputs found

    Preparation and evaluation of 2-methoxyestradiol-loaded pH-sensitive liposomes

    Get PDF
    The development and clinical application of 2-methoxyestradiol (2-ME) as a new type of antitumor drug are limited due to its poor solubility, rapid metabolism in vivo, and large oral dosage. 2-ME-loaded pHsensitive liposomes (2-ME-PSLs) was prepared containing the lipids, Lipoid E-80 (E-80), cholesteryl hemisuccinate (CHEMS), and cholesterol (CHOL) via thin-film ultrasonic dispersion. First, preparation conditions of 2-ME-PSLs were optimized by orthogonal test. Then 2-ME-PSL was characterized, and the release behavior and stability of 2-ME-PSL in vitro were evaluated. The optimal preparation conditions for 2-ME-PSLs were as follows: 2-ME : E-80+CHEMS 1:15; CHOL : E-80+CHEMS 1:5; ultrasonication time 20 minutes. The mean particle size, PDI, zeta potential, and entrapment efficiency (EE) of 2-MEPSLs were 116 ± 9 nm, 0.161 ± 0.025, −22.4 ± 1.7 mV, and 98.6 ± 0.5%, respectively. As viewed under a transmission electron microscope, 2-ME-PSLs were well dispersed and almost spherical. They exhibited significant pH-sensitive properties and were fairly stable when diluted with a physiological solution. In conclusion, 2-ME-PSLs were successfully prepared and possessed a favorable pH sensitivity and good dissolution stability with a normal solution

    Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential

    Get PDF
    Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women

    New trends in fast liquid chromatography for food and environmental analysis

    Full text link

    Accounting for taste? Analysing diverging public support for energy sources in Great Britain

    Get PDF
    Public acceptance of energy technologies is an important area of energy and social science research. However, few studies utilise large datasets which include spatial and temporal dimensions, as well as the demographic and attitudinal characteristics of survey respondents. In this paper, we analyse twenty-five waves of the UK Government's Energy and Climate Change Public Attitudes Tracker: a large, nationally representative dataset spanning six years (2012 - 2018). This enables unique insights into trends in public acceptance across time, space and social groups, covering eight energy sources. We find differing profiles in terms of who supports which types of energy, with a key division between support for renewable technologies on the one hand, and nuclear and fracking on the other. We also identify a growing gap between public and policymakers’ attitudes to energy technologies which we argue must be bridged to ensure a smooth rapid transition that is acceptable to all

    Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery

    No full text
    Non-Ionic surfactant based vesicles, also known as niosomes, have attracted much attention in pharmaceutical fields due to their excellent behavior in encapsulating both hydrophilic and hydrophobic agents. In recent years, it has been discovered that these vesicles can improve the bioavailability of drugs, and may function as a new strategy for delivering several typical of therapeutic agents, such as chemical drugs, protein drugs and gene materials with low toxicity and desired targeting efficiency. Compared with liposomes, niosomes are much more stable during the formulation process and storage. The required pharmacokinetic properties can be achieved by optimizing components or by surface modification. This novel delivery system is also easy to prepare and scale up with low production costs. In this paper, we summarize the structure, components, formulation methods, quality control of niosome and its applications in chemical drugs, protein drugs and gene delivery

    A Simple and Universal Nucleic Acid Assay Platform Based on Personal Glucose Meter Using SARS-CoV-2 N Gene as the Model

    No full text
    A simple, selective, and quantitative platform for point-of-care diagnostic of COVID-19 is urgently needed as a complement in areas where resources are currently relatively scarce. To meet the needs of early diagnosis and intervention, a proof-of-concept demonstration of a universal personal glucose meter-based nucleic acid assay platform (PGM-NAAP) is presented, which converts to SARS-CoV-2 detection from glucose detection. By using magnetic bead separation together with the hand-held PGM for quantitative readout, PGM-NAAP achieves the 98 pM limit of detection for a sequence related to SARS-CoV-2. The ability to discriminate target nucleic acid from genomic DNA, the satisfactory spike recoveries of saliva and serum samples, as well as the good stability all together suggest the potential of the PGM-NAAP for the screening and diagnosis of suspected patients during the outbreaks of COVID-19 in resource-limited settings without sophisticated instruments. On the basis of these findings, PGM-NAAP can be expected to provide an accurate and convenient path for diagnosis of disease-associated nucleic acid
    • 

    corecore