185 research outputs found

    Electrostatic protection of the Solar Power Satellite and rectenna

    Get PDF
    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure

    Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features

    Full text link
    We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ84_{84}, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ84_{84}'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes (470±20)×(383±10)×(245±8)(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)~km % axis ratios b/a=0.82±0.05b/a= 0.82 \pm 0.05 and c/a=0.52±0.02c/a= 0.52 \pm 0.02, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density ρ=0.87±0.01\rho=0.87 \pm 0.01~g~cm3^{-3} a geometric albedo pV=0.097±0.009p_V= 0.097 \pm 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ84_{84}'s limb, that can be interpreted as an abrupt chasm of width 23\sim 23~km and depth >8> 8~km or a smooth depression of width 80\sim 80~km and depth 13\sim 13~km (or an intermediate feature between those two extremes)

    Visual impairment is associated with physical and mental comorbidities in older adults:a cross-sectional study

    Get PDF
    Background<p></p> Visual impairment is common in older people and the presence of additional health conditions can compromise health and rehabilitation outcomes. A small number of studies have suggested that comorbities are common in visual impairment; however, those studies have relied on self-report and have assessed a relatively limited number of comorbid conditions.<p></p> Methods<p></p> We conducted a cross-sectional analysis of a dataset of 291,169 registered patients (65-years-old and over) within 314 primary care practices in Scotland, UK. Visual impairment was identified using Read Code ever recorded for blindness and/or low vision (within electronic medical records). Prevalence, odds ratios (from prevalence rates standardised by stratifying individuals by age groups (65 to 69 years; 70 to 74; 75 to 79; 80 to 84; and 85 and over), gender and deprivation quintiles) and 95% confidence intervals (95% CI) of 37 individual chronic physical/mental health conditions and total number of conditions were calculated and compared for those with visual impairment to those without.<p></p> Results<p></p> Twenty seven of the 29 physical health conditions and all eight mental health conditions were significantly more likely to be recorded for individuals with visual impairment compared to individuals without visual impairment, after standardising for age, gender and social deprivation. Individuals with visual impairment were also significantly more likely to have more comorbidities (for example, five or more conditions (odds ratio (OR) 2.05 95% CI 1.94 to 2.18)).<p></p> Conclusions<p></p> Patients aged 65 years and older with visual impairment have a broad range of physical and mental health comorbidities compared to those of the same age without visual impairment, and are more likely to have multiple comorbidities. This has important implications for clinical practice and for the future design of integrated services to meet the complex needs of patients with visual impairment, for example, embedding depression and hearing screening within eye care services

    The 2017 May 20th^{\rm th} stellar occultation by the elongated centaur (95626) 2002 GZ32_{32}

    Full text link
    We predicted a stellar occultation of the bright star Gaia DR1 4332852996360346368 (UCAC4 385-75921) (mV_{\rm V}= 14.0 mag) by the centaur 2002 GZ32_{32} for 2017 May 20th^{\rm th}. Our latest shadow path prediction was favourable to a large region in Europe. Observations were arranged in a broad region inside the nominal shadow path. Series of images were obtained with 29 telescopes throughout Europe and from six of them (five in Spain and one in Greece) we detected the occultation. This is the fourth centaur, besides Chariklo, Chiron and Bienor, for which a multi-chord stellar occultation is reported. By means of an elliptical fit to the occultation chords we obtained the limb of 2002 GZ32_{32} during the occultation, resulting in an ellipse with axes of 305 ±\pm 17 km ×\times 146 ±\pm 8 km. From this limb, thanks to a rotational light curve obtained shortly after the occultation, we derived the geometric albedo of 2002 GZ32_{32} (pVp_{\rm V} = 0.043 ±\pm 0.007) and a 3-D ellipsoidal shape with axes 366 km ×\times 306 km ×\times 120 km. This shape is not fully consistent with a homogeneous body in hydrostatic equilibrium for the known rotation period of 2002 GZ32_{32}. The size (albedo) obtained from the occultation is respectively smaller (greater) than that derived from the radiometric technique but compatible within error bars. No rings or debris around 2002 GZ32_{32} were detected from the occultation, but narrow and thin rings cannot be discarded.Comment: Accepted for publication in MNRAS (8-Dec.-2020), 15 pages, 9 figure

    How accurate is an LCD screen version of the Pelli–Robson test?

    Get PDF
    Purpose: To evaluate the accuracy and repeatability of a computer-generated Pelli–Robson test displayed on liquid crystal display (LCD) systems compared to a standard Pelli–Robson chart. Methods: Two different randomized crossover experiments were carried out for two different LCD systems for 32 subjects: 6 females and 10 males (40.5 ± 13.0 years) and 9 females and 7 males (27.8 ± 12.2 years), respectively, in the first and second experiment. Two repeated measurements were taken with the printed Pelli–Robson test and with the LCDs at 1 and 3 m. To test LCD reliability, measurements were repeated after 1 week. Results: In Experiment 1, contrast sensitivity (CS) measured with LCD1 resulted significantly higher than Pelli–Robson both at 1 and at 3 m of about 0.20 log 1/C in both eyes (p < 0.01). Bland–Altman plots showed a proportional bias for LCD1 measures. LCD1 measurements showed reasonable repeatability: ICC was 0.83 and 0.65 at 1 and 3 m, respectively. In Experiment 2, CS measured with LCD2 resulted significantly lower than Pelli–Robson both at 1 and at 3 m of about 0.10 log 1/C in both eyes (p < 0.01). Bland–Altman plots did not show any proportional bias for LCD2 measures. LCD2 measurements showed sufficient repeatability: ICC resulted 0.51 and 0.65 at 1 and 3 m, respectively. Conclusions: Computer-generated versions of Pelli–Robson test, displayed on LCD systems, do not provide accurate results compared to classic Pelli–Robson printed version. Clinicians should consider that Pelli–Robson computer-generated versions could be non-interchangeable to the printed version

    Vision in high-level football officials

    Get PDF
    YesOfficiating in football depends, at least to some extent, upon adequate visual function. However, there is no vision standard for football officiating and the nature of the relationship between officiating performance and level of vision is unknown. As a first step in characterising this relationship, we report on the clinically-measured vision and on the perceived level of vision in elite-level, Portuguese football officials. Seventy-one referees (R) and assistant referees (AR) participated in the study, representing 92% of the total population of elite level football officials in Portugal in the 2013/2014 season. Nine of the 22 Rs (40.9%) and ten of the 49 ARs (20.4%) were international-level. Information about visual history was also gathered. Perceived vision was assessed using the preference-values-assigned-to-global-visual-status (PVVS) and the Quality-of-Vision (QoV) questionnaire. Standard clinical vision measures (including visual acuity, contrast sensitivity and stereopsis) were gathered in a subset (n = 44, 62%) of the participants. Data were analysed according to the type (R/AR) and level (international/national) of official, and Bonferroni corrections were applied to reduce the risk of type I errors. Adopting criterion for statistical significance of p<0.01, PVVS scores did not differ between R and AR (p = 0.88), or between national- and international-level officials (p = 0.66). Similarly, QoV scores did not differ between R and AR in frequency (p = 0.50), severity (p = 0.71) or bothersomeness (p = 0.81) of symptoms, or between international-level vs national-level officials for frequency (p = 0.03) or bothersomeness (p = 0.07) of symptoms. However, international-level officials reported less severe symptoms than their national-level counterparts (p<0.01). Overall, 18.3% of officials had either never had an eye examination or if they had, it was more than 3 years previously. Regarding refractive correction, 4.2% had undergone refractive surgery and 23.9% wear contact lenses when officiating. Clinical vision measures in the football officials were similar to published normative values for young, adult populations and similar between R and AR. Clinically-measured vision did not differ according to officiating level. Visual acuity measured with and without a pinhole disc indicated that around one quarter of participants may be capable of better vision when officiating, as evidenced by better acuity (≥1 line of letters) using the pinhole. Amongst the clinical visual tests we used, we did not find evidence for above-average performance in elite-level football officials. Although the impact of uncorrected mild to moderate refractive error upon officiating performance is unknown, with a greater uptake of eye examinations, visual acuity may be improved in around a quarter of officials.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013

    ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations

    Get PDF
    The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community

    Increased Anion Channel Activity Is an Unavoidable Event in Ozone-Induced Programmed Cell Death

    Get PDF
    Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death.-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate
    corecore