9 research outputs found

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Evaluating the involvement of mtDNA variants in patients diagnosed with myalgic encephalomyelitis

    No full text
    MSc (Biochemistry), North-West University, Potchefstroom Campus, 2016In mitochondrial research, many investigators have examined the association between mitochondrial DNA (mtDNA) variants in rare as well as common complex diseases. Previous studies at the CHM (NWU) detected three known pathogenic mtDNA variants (m.7497G>A, m.9185T>C and m.10197G>A) at low allele frequencies in a number of patients diagnosed with myalgic encephalomyelitis (ME). Since no diagnostic examinations or conclusive treatments currently exist for ME, an association between ME and known pathogenic variants, or a cumulative effect of rare non-synonymous variants (pathogenicity score) on ME, could provide valuable insights into understanding the causes of ME. Literature shows contradicting data regarding the role of mitochondrial dysfunction in ME, and while uncommon mtDNA deletions have been reported, the three known pathogenic mtDNA variants introduced here have not previously been observed in ME patients (but were later identified as sequencing artefacts in the duration of this study), nor has the combined effect of numerous rare non-synonymous variants on the mitochondrial bioenergetics of ME patients been assessed. To do this, cytoplasmic hybrid (cybrid) cells were developed by fusing ρ0 (mtDNA-depleted) cells with healthy control and ME patient‟s blood platelets (containing solely mtDNA). These cybrid cells were used for mitochondrial bioenergetic analyses, using a Seahorse XFe96 analyser, and for determination of the relative mtDNA copy number (RMCN), using real-time PCR. In addition, conditions for analysing selected cell lines (including the cybrids) using the Seahorse XFe96 analyser were optimized. While no apparent bioenergetic irregularities were observed in ME patient cybrids compared to healthy controls, an increased pathogenicity score appeared to be associated with a decrease in ATP production and a decreased electron transport system (ETS) capacity in ME patients. This new approach for investigating mtDNA variants and a common complex disease may provide new insights into the diagnostic and causative factors of ME.Master

    Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients

    Get PDF
    CITATION: Haylett, W., et al. 2016. Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients. Parkinson’s Disease, 2016 (Article ID 1819209), doi:10.1155/2016/1819209.The original publication is available at https://www.hindawi.comMutations in the parkin gene are the most common cause of early-onset Parkinson’s disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.https://www.hindawi.com/journals/pd/2016/1819209/Publisher's versio

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text

    ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

    No full text
    The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use
    corecore