19 research outputs found

    Description of a utrophin associated protein complex in lipid raft domains of human artery smooth muscle cells

    Get PDF
    AbstractThe dystrophin-associated protein complex (DAPC) is a multimeric complex that links the extracellular matrix to the actin cytoskeleton, and in some cases dystrophin can be substituted by its autosomal homologue utrophin to form the utrophin-associated protein complex (UAPC). Both complexes maintain the stability of plasma membrane during contraction process and play an important role in transmembrane signaling. Mutations in members of the DAPC are associated with muscular dystrophy and dilated cardiomyopathy. In a previous study with human umbilical cord vessels, we observed that utrophin colocalize with caveolin-1 (Cav-1) which proposed the presence of UAPC in the plasma membrane of vascular smooth muscle (VSM). In the current study, we demonstrated by immunofluorescence analysis, co-immunoprecipitation assays, and subcellular fractionation by sucrose gradients, the existence of an UAPC in lipid raft domains of human umbilical artery smooth muscle cells (HUASMC). This complex is constituted by utrophin, ÎČ-DG, Δ-SG, α-smooth muscle actin, Cav-1, endothelial nitric oxide synthase (eNOS) and cavin-1. It was also observed the presence of dystrophin, utrophin Dp71, ÎČ-SG, ÎŽ-SG, ÎŽ-SG3 and sarcospan in non-lipid raft fractions. Furthermore, the knockdown of α/ÎČ-DG was associated with the decrease in both the synthesis of nitric oxide (NO) and the presence of the phosphorylated (active) form of eNOS; and with a reduction in the downstream activation of some cGMP signaling transduction pathway components. Together these results show the presence of an UAPC complex in HUASMC that may participate in the activity regulation of eNOS and in the vascular function

    Mutational Landscape of CEBPA in Mexican Pediatric Acute Myeloid Leukemia Patients: Prognostic Implications

    Get PDF
    BackgroundIn Mexico, the incidence of acute myeloid leukemia (AML) has increased in the last few years. Mortality is higher than in developed countries, even though the same chemotherapy protocols are used. CCAAT Enhancer Binding Protein Alpha (CEBPA) mutations are recurrent in AML, influence prognosis, and help to define treatment strategies. CEBPA mutational profiles and their clinical implications have not been evaluated in Mexican pediatric AML patients.Aim of the StudyTo identify the mutational landscape of the CEBPA gene in pediatric patients with de novo AML and assess its influence on clinical features and overall survival (OS).Materials and MethodsDNA was extracted from bone marrow aspirates at diagnosis. Targeted massive parallel sequencing of CEBPA was performed in 80 patients.ResultsCEBPA was mutated in 12.5% (10/80) of patients. Frameshifts at the N-terminal region were the most common mutations 57.14% (8/14). CEBPA biallelic (CEBPABI) mutations were identified in five patients. M2 subtype was the most common in CEBPA positive patients (CEBPAPOS) (p = 0.009); 50% of the CEBPAPOS patients had a WBC count > 100,000 at diagnosis (p = 0.004). OS > 1 year was significantly better in CEBPA negative (CEBPANEG) patients (p = 0.0001). CEBPAPOS patients (either bi- or monoallelic) had a significantly lower OS (p = 0.002). Concurrent mutations in FLT3, CSF3R, and WT1 genes were found in CEBPAPOS individuals. Their contribution to poor OS cannot be ruled out.ConclusionCEBPA mutational profiles in Mexican pediatric AML patients and their clinical implications were evaluated for the first time. The frequency of CEBPAPOS was in the range reported for pediatric AML (4.5–15%). CEBPA mutations showed a negative impact on OS as opposed to the results of other studies

    IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia

    Get PDF
    BackgroundRecurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL.MethodsA total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation.ResultsWe identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed.DiscussionOur findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome

    Maternal dietary patterns and acute leukemia in infants: results from a case control study in Mexico

    Get PDF
    BackgroundChildhood cancer is the leading cause of disease-related mortality among children aged 5–14 years in Mexico, with acute leukemia being the most common cancer among infants. Examining the overall dietary patterns allows for a comprehensive assessment of food and nutrient consumption, providing a more predictive measure of disease risk than individual foods or nutrients. This study aims to evaluate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in Mexican infants.MethodsA hospital-based case–control study was conducted, comparing 109 confirmed acute leukemia cases with 152 age-matched controls. All participants (≀24 months) were identified at hospitals in Mexico City between 2010 and 2019. Data on a posteriori dietary patterns and other relevant variables were collected through structured interviews and dietary questionnaires. Multivariate logistic regression was employed to estimate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in infants.ResultsThe “Balanced & Vegetable-Rich” pattern, characterized by a balanced consumption of various food groups and higher vegetable intake, exhibited a negative association with acute leukemia when compared to the “High Dairy & Cereals” Pattern (adjusted odds ratio [OR] = 0.51; 95% confidence interval [CI]: 0.29, 0.90). We observed that mothers who gave birth to girls and adhered to a healthy dietary pattern during pregnancy exhibited significantly lower odds of their children developing AL compared to those who gave birth to boys [OR = 0.32 (95% CI 0.11, 0.97)]. Our results underscore the significance of maternal nutrition as a modifiable factor in disease prevention and the importance of prenatal health education

    A novel isoform of delta-sarcoglycan is localized at the sarcoplasmic reticulum of mouse skeletal muscle.

    No full text
    International audienceThe sarcoglycan-sarcospan complex (alpha-, beta-, gamma-, delta-, epsilon-, and zeta-SG-SSPN), a component of the dystrophin-associated glycoprotein complex (DAGC), is located at the sarcolemma of muscle fibers where it contributes to maintain cell integrity during contraction-relaxation cycles; gamma- and delta-SG are also expressed in the sarcoplasmic reticulum (SR). In this study, we report the identification of a novel isoform of murine delta-SG produced by alternative splicing that we named delta-SG3. This isoform is present at transcript level in several tissues, with its highest expression in skeletal and cardiac muscle. The delta-SG3 protein lacks the last 122 amino acids at the C-terminal, which are replaced by 10 new amino acids (EGFLNMQLAG). Interestingly, double immunofluorescence analysis for delta-SG3 and the dihydropyridine receptor (DHPR) shows a close localization of these two proteins. We propose the subcellular distribution of this novel delta-SG3 isoform at the SR and its involvement in intracellular calcium concentration regulation

    The sarcoglycan-sarcospan complex localization in mouse retina is independent from dystrophins.

    No full text
    The sarcoglycan-sarcospan (SG-SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the beta-, delta-, gamma-, epsilon-sarcoglycans and sarcospan are expressed in mouse retina. They are localized predominantly in the outer and the inner limiting membranes, probably in the M?r cells and also in the ganglion cells axons where the expression of dystrophins have never been reported. We also investigated the status of the sarcoglycans in the retina of mdx(3cv) mutant mice for all Duchene Muscular Dystrophy (DMD) gene products. The absence of dystrophin did not produce any change in the sarcoglycan-sarcospan components expression and distribution

    Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries

    No full text
    Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling

    Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia.

    No full text
    Acute lymphoblastic leukemia (ALL) is the most common cancer in children around the globe. Mexico City has one of the highest incidence rates of childhood leukemia worldwide with 49.5 cases per million children under the age of 15 which is similar to that reported for Hispanic populations living in the United States. In addition, it has been noted a dismal prognosis in Mexican and Hispanic ALL pediatric population. Although ALL, like cancer in general, has its origins in endogenous, exogenous, and genetic factors, several studies have shown that the immune system also plays a deterministic role in cancer development. Among various elements of the immune system, T lymphocytes and NK cells seem to dominate the immune response against leukemia. The aim of the present study was to perform a phenotypic and functional characterization of NK cells in ALL Mexican children at the moment of diagnosis and before treatment initiation. A case-control study was conducted by the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia (MIGICCL). 41 cases were incident ALL children younger than 17 years old and residents of Mexico City. 14 controls were children without leukemia, matched by age and sex with cases. NK cell function was evaluated by degranulation assays towards K562 cells and SLAM-associated protein (SAP) expression was measured by intracellular staining. All assays were performed using peripheral blood mononuclear cells from controls and patients. The results indicate that NK mediated cytotoxicity, measured by CD107a degranulation assays in response to K562 cells, was reduced in ALL patients compared to controls. Interestingly, an impaired NK cell killing of target cells was not equally distributed among ALL patients. In contrast to patients classified as high-risk, standard-risk patients did not display a significant reduction in NK cell-mediated cytotoxicity. Moreover, patients presenting a leukocyte count ≄ 50,000xmm3 displayed a reduction in NK-cell mediated cytotoxicity and a reduction in SAP expression, indicating a positive correlation between a reduced SAP expression and an impaired NK cell-mediated citotoxicity. In the present study it was observed that unlike patients with standard-risk, NK cells from children presenting high-risk ALL, harbor an impaired cytotoxicity towards K562 at diagnosis. In addition, NK cell function was observed to be compromised in patients with a leukocyte count ≄50,000xmm3, where also it was noticed a decreased expression of SAP compared to patients with a leukocyte count <50,000xmm3. These data indicate NK cell-mediated cytotoxicity is not equally affected in ALL patients, nevertheless a positive correlation between low SAP expression and decreased NK cell-mediated cytotoxicity was observed in ALL patients with a leukocyte count ≄50,000xmm3. Finally, an abnormal NK cell-mediated cytotoxicity may represent a prognostic factor for high-risk acute lymphoblastic leukemia
    corecore