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The dystrophin-associated protein complex (DAPC) is amultimeric complex that links the extracellularmatrix to
the actin cytoskeleton, and in some cases dystrophin can be substituted by its autosomal homologue utrophin to
form the utrophin-associated protein complex (UAPC). Both complexes maintain the stability of plasma mem-
brane during contraction process and play an important role in transmembrane signaling. Mutations inmembers
of the DAPC are associated with muscular dystrophy and dilated cardiomyopathy. In a previous study with
human umbilical cord vessels, we observed that utrophin colocalize with caveolin-1 (Cav-1) which proposed
the presence of UAPC in the plasmamembrane of vascular smoothmuscle (VSM). In the current study, we dem-
onstrated by immunofluorescence analysis, co-immunoprecipitation assays, and subcellular fractionation by su-
crose gradients, the existence of an UAPC in lipid raft domains of human umbilical artery smooth muscle cells
(HUASMC). This complex is constituted byutrophin,β-DG, ε-SG,α-smoothmuscle actin, Cav-1, endothelial nitric
oxide synthase (eNOS) and cavin-1. It was also observed the presence of dystrophin, utrophin Dp71, β-SG, δ-SG,
δ-SG3 and sarcospan in non-lipid raft fractions. Furthermore, the knockdown ofα/β-DGwas associatedwith the
decrease in both the synthesis of nitric oxide (NO) and the presence of the phosphorylated (active) formof eNOS;
and with a reduction in the downstream activation of some cGMP signaling transduction pathway components.
Together these results show the presence of an UAPC complex in HUASMC that may participate in the activity
regulation of eNOS and in the vascular function.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Muscular dystrophies (MD) are caused by genetic alterations in sev-
eral components of the DAPC [1]. This complex is known as a large
multimeric complex of cytoskeletal and membrane-spanning proteins
composed by dystrophin, syntrophins, dystrobrevin, dystroglycans
(DG) (α- and β-), sarcoglycans (SG) (α-/ε-, β-, δ- and γ-/ζ-), and
sarcospan (SSPN) [2–5]. The DAPC serves as a molecular scaffold in
maintaining membrane stability, mechanotransduction signals during
contraction and relaxation process, and Ca2+ homeostasis [6–9]. Muta-
tion in the dystrophin gene causes Duchenne/Becker type muscular
dystrophy (DMD/BMD), whereas defects in α-, β-, γ- and δ- SG cause
limb girdle muscular dystrophy (LGMD 2D-F, respectively) [10–12].
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Utrophin, the autosomic homologue of dystrophin, is an ubiquitous
protein found in striated and smooth muscle [13,14] as well as in non-
muscular tissues like brain, kidney and endothelial cells [15–17]. By
interacting with some DAPC members, utrophin can replace its homo-
logue dystrophin to form a UAPC [18]. In the dystrophin-deficient
mdxmouse, amodel of DMD, utrophin overexpression corrects the dys-
trophic phenotype, so that it has been proposed that utrophin may res-
cue the muscular functionality in DMD patients [19,20].

Several evidences have shown that patients with DMD/BMD and
LGMD 2C–F are accompanied by dilated cardiomyopathy (DCM)
[21–28]; which has been also observed in null mice models for β-,
δ- and γ- SG [29–31]. Besides, the presence of coronary artery constric-
tions in these models has led to propose that these irregularities are one
of the causes to develop DCM [29]. All these results show the importance
that proteins of the DAPC/UAPC may have in the function of VSM.

VSM tissue contains a specific profile of DAPC proteins which con-
sists of dystrophin, α- and β-DG, ε-, β-, δ- and γ- or ζ-SG and SSPN
[32–34]. Although several reports describe the expression of utrophin
in this tissue, there has been little focus on its presence as a component
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of a potential protein complex. Biochemical evidences have reported in
arteries of animal models the presence of long forms of dystrophin and
utrophin, while small veins contained only long forms of utrophin [35].
In a recent study focused on the expression of DAPC/UAPC performed in
arteries and veins of human umbilical cord by our research group, we
found that SG proteins and Cav-1 either colocalize with utrophin or
dystrophin in the smooth muscle tissue and with utrophin in endothe-
lium [17]. We have also described a particular UAPC in endothelial cells
which may have a mechano transduction role by its link with eNOS in
caveolar domains [36]. Other studies have reported a DAPC in caveolar
domains of airway smooth muscle (ASM) that is implicated in mediat-
ing intracellular Ca2+ release [37]. In the current study we describe an
UAPC localized in lipid raft domains of HUASMC that partially partici-
pate in theNO/cGMP signaling pathway activity regulation and vascular
function. Some other results point out the presence of a potential alter-
native UAPC/DAPC in non-caveolae membrane domains.

2. Materials and methods

The study was approved by the Institutional Research and Ethics
Committees.

2.1. Tissues

The umbilical cords of mature newborns from normal full-term
pregnancies were obtained immediately after birth, and 10–15 cm of
tissue was placed in 0.9% NaCl plus 2% antibiotic–antimycotic mixture
(Gibco-BRL Rockville MD, USA).

2.2. Cell culture

Under sterile conditions, cord arteries were identified and excised
from the umbilical cord. The vessels were rinsed 3 times in Hank's bal-
anced salt solution containing 1% of antibiotic–antimycotic mixture
(Gibco-BRL, Rockville MD, USA). Endothelial cells were separated from
the vessels by enzymatic digestion [38]. Arterieswere cut longitudinally
and dissected into small pieces of tissue (3 to 5 mm). Vessel explants
were placed in 100-mM cultures plates (approximately 20 per plate)
with plated vessels lumens down. 6 mL of smooth muscle cell basal
medium (SmBm, Lonza Walkersville, MD USA) supplemented with
SmGM-2 SingleQuot® kit and 15% fetal bovine serum (Lonza) was
added to culture plates and incubated at 37 °Cwith 5% CO2. Cell culture
media was gently removed and replaced with fresh medium twice a
week. Cells started growing from explants within two weeks and
reach confluence in approximately 4 weeks. Confluence cell cultures
were harvested by trypsinization and centrifuged at 1000 ×g for
10 min. The pellet was resuspended in supplemented SmBm and
incubated at 37 °Cwith 5%CO2. Smoothmuscle cellswere characterized
by α-SMA protein presence (clone αsm1 from Vector Laboratories,
Burlingame, CA, USA); N99% of cells were positive for this smooth mus-
clemarker. Also, protein extracts of HUASMC, analyzed byWestern blot,
showed the presence ofα-SMA; but, endothelial and fibroblast markers
were not detected, CD31 and fibronectin respectively (data not shown).
Cell cultures were typically assayed on passages 8–10.

2.3. Detergent-resistant membrane isolation

Membrane enriched caveolae domains were isolated from HUASMC
by detergent-resistant membrane method (DRMs) as previously de-
scribed [39]. Briefly, about 107 cells were washed three times in ice-cold
PBS, and subsequently lysed in 1.0 mL of cold TNE buffer (20 mmol/L
Tris, pH 7.4, 140 mmol/L NaCl, 2 mmol/L EDTA) containing 0.05% Triton
X-100 plus protease inhibitor cocktails (Roche Applied Sciences). Cell
lysate was homogenized by passage through an insulin syringe 20 times
and subsequently centrifuged at 2000 rpm for 5 min at 4 °C to remove
the cell nuclei and debris. Supernatant was recovered and incubated at
4 °C for 45 min and thenmixed with 1 mL of ice-cold 80% (w/v) sucrose
in TNE buffer. This mixture was seeded at the bottom of a Beckman
SW50.1 ultracentrifuge tube, and gently overlaid with 2 mL of ice-cold
35% (w/v) sucrose in TNE buffer, and 1 mL of ice-cold 5% (w/v) sucrose
in TNE buffer. Then, the samples were centrifuged at 130,000 ×g at 4 °C
for 17 h. After centrifugation, twelve fractions (Fx) were collected from
the top to the bottom of the tube. Finally, an aliquot of each fraction
wasmixed at a 3:1 (v/v) ratio with 4× concentrated Laemli loading sam-
ple buffer, boiled and subjected to 3–12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE).

2.4. Co-immunoprecipitation assays

HUASMCwere lysated with ice-cold lysis buffer (0.5%, Triton X-100,
50 mmol/L Tris–HCl, pH 7.4, 0.15 mol/L NaCl, 0.5 mmol/L EDTA)
supplemented with protease inhibitor cocktail. We used the Immuno-
precipitation Kit-Dynabeads Protein G for the co-IP. Fifty microliters of
protein-G Dynabeads (Invitrogen) was washed three times in pH cit-
rate–phosphate buffer. The volume of the bead suspensionwas adjusted
with PBS plus 0.1% Tween-20 (PBS-T) to 50 μL and incubated with 2 μg
of antibodies against utrophin, Cav-1, flotillin-1, or PKG 1with tilting/
rotation. Antibodies bound to Dynabeads were washed three times in
500 μL of pH5 citrate–phosphate buffer and pelleted in a magnetic
rack. 50 μL of cleared cell lysates was added and incubated by 2 h at
4 °C. Then, the mixture was washed three times (5 min) in 500 μL of
PBS-T containing protease inhibitor cocktail and pelleted. Pelleted
beads and supernatant were boiled in SDS-sample buffer for 5 min.
Finally the co-immunoprecipitated proteins and those remaining in
the supernatant were separated by 2% to 13% SDS-PAGE gradient and
analyzed by immunoblot with antibodies against DAPC or UAPC mem-
bers. Control experiments were included using irrelevant monoclonal
antibodies, as well as precipitations with specific antibodies, and using
lysis buffer alone instead of extracts.

Regarding the HUASMC knockdown with the specific α/β DG siRNA
theprecipitatedproteinswere analyzed by immunoblotwith antibodies
against the cGMP-dependent protein kinase 1 (PKG 1), the vasodilator-
stimulated phosphoprotein (VASP) or the phospho-VASP (Ser239).

2.5. Western blot analysis

ForWestern blot analysis HUASMCwere homogenized in 50 μL lysis
buffer (1% Triton X-100, 20 mmol/L Tris, 140 mmol/L NaCl, 2 mmol/L
EDTA, and 0.1% SDS) and supplemented with protease inhibitor cock-
tails. Then the cell lysates were passed through an insulin syringe five
times, sonicated for 30 min at 4 °C and centrifuged at 12,000 ×g for
10 min. Total protein content was measured in the supernatant using
Bradford assay (Bio-Rad). A total of 40 μg of protein was loaded onto
2% to 13% SDS-PAGE gradient, electrotransferred, and incubated for
1 h in blocking solution (5% nonfat dry milk in PBS plus 0.1% Tween
20 [PBS-T]) followed by overnight incubation at 4 °C with appropriate
primary antibody. Primary antibodies were typically diluted in PBS-T
plus 5% nonfat milk (NFM). Membranes were washed four times for
10 min in PBS-T and incubated 1 h at room temperature in the presence
of a specific HRP-conjugated secondary antibody in PBS-T solution.
Membranes were again washed four times in PBS-T, and finally were
developed using a Plus-ECL chemiluminescence detection kit (Thermo
scientific, Rockford, Illinois, USA).

2.6. Dot-blot

A volume of 10 μL of each sucrose gradient fraction were dropped
onto a nitrocellulose membrane (Amersham™ Hybond™-ECL). After
air-drying, the membrane was blocked with 5% nonfat milk (NFM) in
PBS-T at room temperature for 2 h. The nitrocellulose membrane was
subsequently overnight incubated at 4 °C with a Cholera Toxin Subunit
B-peroxidase conjugate (CT-B), (used as GM1 marker) (Sigma) at
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0.25 mg/mL in blocking solution. Followed by three timeswashingwith
PBS-T, the nitrocellulose membrane was developed using a Plus-ECL
chemiluminescence detection kit as described above.

2.7. Immunofluorescence

Co-localization of GM1 marker with utrophin or dystrophin was
performed by previously established method [40]. HUASM cells at-
tached to coverslips were washed with PBS buffer and incubated with
CT-B Alexa Fluor-conjugated 594 (5 μg/mL) dissolved in bicarbonate-
free DMEM/Hepes, 0.5% BSA, for 30 min on ice to label GM1. Cells
were then washed three times in cold DMEM/Hepes/BSA and fixed
with methanol for 10 min at −20 °C. Cells were permeabilized with
0.2% Triton X-100 for 5 min and blocked in PBS buffer containing 2.5%
BSA and 0.5% gelatin for 1 h. For antibody binding, cells were incubated
overnight at 4 °C with 1/100 dilution of primary antibody, washed 3
timeswith PBS, and incubatedwith 1/200 dilution of secondary fluores-
cent antibodies for 1 h at room temperature. After a final washing step
with PBS the coverslips were mounted with immunofluorescence
mounting medium (Vector Laboratories, Burlingame, CA) and analyzed
by a confocal laser scanning microscope Pascal-LSM 510 (Carl Zeiss,
Oberkochen, Germany), using Plan-Apochromat 63×/1.4 oil objective.
Digital imageswere processed using Advanced ImagingMicroscopy Re-
lease 4.0 (SP1) software (Carl Zeiss, Oberkochen, Germany). Negative
control labeling was performed with non-immune IgGs instead of the
primary antibodies.

2.8. α/β-DG knockdown

α/β-DG precursor was knockdown using a α/β DG siRNA reagent
system (Santa Cruz Biotechnology, sc-45064, 43488) according to the
manufacturer's instruction. Aliquots of 2 × 105 cells were seeded onto
6 well plate and grown to approximately 80–90% confluency. Then the
cells were transfected with a pool of 3 target-specific siRNAs against
α/β-DG, or with an irrelevant siRNA [(−) siRNA] using transfection
media reduced in fetal bovine serum. After 7 h of incubation the trans-
fection mixture was replaced with DMEM (Gibco-BRL, Rockville MD,
USA), supplemented with 10% of fetal bovine serum plus 1% of antibiot-
ic–antimycotic mixture and incubated for 72 h [41]. Later, the
transfected cells were incubated for 6 h in DMEM without phenol red
deprived of fetal bovine serum and finally stimulated with bradykinin
1 μM for 15 min. Culture supernatants were used to measure nitric
oxide (NO) levels, and the cell proteins obtained with RIPA buffer were
analyzed by Western blot.

2.9. Nitrite assay

Evaluation of NO levels produced by HUASM cells was measured
indirectly by the Greiss method [36]. The supernatants obtained from in-
tact control of HUASMC, as well as transfected cells, either (−) siRNA or
α/βDG siRNA under bradykinin stimuluswere prepared for nitrite detec-
tionwith an equal volumeofGriess reagent (0.8% sulfanilamide and0.05%
naphthylethylenediamine dihydrochloride in 1 N of acetic acid) and then
incubated at room temperature for 30 min. Using NaNO2 to generate a
standard curve, nitrite production was determinated spectrophotometri-
cally on ELISA plated reader (Labsystems Multiskan Plus, Conquer Scien-
tific) reading at 540 nm.

2.10. Antibodies

Most of the primary and secondary antibodies used in this study
were purchased from commercial sources, then used and stored
according to the manufacturer's recommendations. Utrophin (UTR)
(H300), β-DG (C-20), ε-SG (C-17), endothelial nitric oxide synthase
(eNOS) (NOS3 N-20) and cGMP-dependent protein kinase 1 (cGKIα/
β, E-1) were obtained from Santa Cruz Biotechnology, Inc.; phospho
(ser1177) eNOS (9572), flotillin-1 (3253), vasodilator-stimulated phos-
phoprotein (VASP, 9A2), and the phospho-VASP (Ser239) from Cell Sig-
naling; dystrophin (Dys) (Rod domain), β-SG (βSARC/5B1) and δ-SG
(δSarc3/12C1) from Vector Laboratories; Cav-1 (2297/Caveolin-1) and
PTRF (polymerase I and transcript release factor; cavin-1) (4/PTRF)
from Transduction Laboratories BD Biosciences. In the cases of SSPN
and Dp71 it was a generous gift from Dr. Rachelle H. Crosbie and Dr.
Bulmaro Cisneros, respectively, whereas δ-SG3was obtained as referred
[42]. Alexa Flour-conjugated secondary antibodies and CT-B Alexa
Fluor-conjugated 594 (C-34777) were obtained fromMolecular Probes.

3. Results

3.1. Utrophin exhibits partial co-localization with lipid raft and caveolae
markers in HUASMC

In order to investigate the localization of utrophin/dystrophin re-
garding lipid raft domains, we performed a set of double immunofluo-
rescence assays employing a GMI marker and antibodies against
dystrophin or utrophin in HUASMC. Since it is well known that lipid
raft domains are enriched in the ganglioside GM1, which is detected
specifically with the CT-B [40,43], we used this marker to identify
utrophin or dystrophin co-localization. Double immunofluorescence
analysis and confocal microscopy (Fig. 1) revealed an extensive co-
localization of utrophin with GM1 (Fig. 1A Utr/CT-B). In contrast, dys-
trophin showed no co-localization with GM1 (Fig. 1A Dys/CT-B).
Image amplification more clearly demonstrated that utrophin, but not
dystrophin, co-localizes with GM1 marker (Fig. 1A * Utr and * Dys).
We also observed a partial co-localization of β-DG, ε-SG and α-SMA
with GM1 marker (Fig. 1B). Amplification of squares showed with
more detail the partial co-localization of these proteins in spots along
the cell membrane (Fig 1B * β-DG, * ε-SG and * α-SMA). Furthermore,
since GM1 is a marker for caveolae and noncaveolae lipid raft domains
we also tested the colocalization of utrophin with cavin-1 and cav-1,
two caveolae domain markers. By this analysis, the colocalization of
utrophin with cavin-1 and cav-1 in different areas of the cell membrane
(Fig. 2 merge Utr/Cavin-1 and Utr/Cav-1) was evident. These outcomes
suggest that utrophin and some UAPCmembers may be forming a com-
plex in caveolae and non-caveolae-related domains.

3.2. UAPC members partially reside in lipid raft domains of HUASMC

Cav-1 and cavin-1 are two essential protein components of caveolae
lipid raft domains, which are plasmamembrane invaginations enriched
in cholesterol and glycosphingolipids [44,45]. These domainsmayplay a
role in transport, signaling, mechanosensing and lipid regulation [46].
Moreover, flotillins are proteins not constituents of caveolae domains,
but that are present in distinct lipid raft domains of the plasma mem-
brane [47]. To determine whether UAPC proteins are located in lipid
raft domains of HUASMC,we isolated TritonX-100 insoluble cholesterol
and sphingolipidmembrane fractions by sucrose density gradient assay.
Initially, we tested the purity of all the gradient fractions by dot blot
using CT-B-HRP coupled, which binds ganglioside GM1, a sphingolipid
found mostly in lipid rafts. Through this assay an enrichment of GM1
was observed in low-density fractions (Fx 3–5) (Fig. 3). Fractions 1
and 2 were discarded because they showed no evidence of proteins.

The presence of UAPC/DAPC proteins in the sucrose gradient frac-
tions was determined by Western blot analysis. Utrophin, β-DG, ε-SG,
α-SMA and eNOS coincided with Cav-1, flotillin and cavin-1, as well as
the ganglioside GM1 in Fx 3–5 (Fig. 3). These data are consistent with
those obtained in the double immunofluorescence assay using Cav-1
and/or cavin-1 and together confirm the presence of a UAPC in caveolae
domains.

Conversely, dystrophin, Dp71, β-SG, δ-SG, δ-SG3, and SSPNwere pri-
marily evident in denser fractions (Fig. 3 Fx 8–12) along with utrophin,
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Fig. 1.Utrophin andmembers of theUAPC co-localizeswith gangliosideGM1 in sarcolemmaofHUASMC. Primary cultures of HUASMCwere incubatedwith Cholera Toxin Subunit B (CT-B)
Alexa Fluor 594-conjugate, which serves as a ganglioside GM1marker. (A) Cells were then immunolabeled to either utrophin (Utr) or dystrophin (Dys). Merged confocal images reveal
that Utr (Utr/CT-B), but not Dys (Dys/CT-B), co-localizeswith the ganglioside GM1. Enlargements of the corresponding boxed areas (*) show clearer that Utr co-localizeswith ganglioside
GM1. (B) Cells marked with CT-B Alexa Fluor 594 conjugate were also immunolabeled with β-dystroglycan (β-DG), ε-sarcoglycan (ε-SG) and α-smooth muscle actin (α-SMA). Merged
confocal images reveal that the three proteins co-localize with the ganglioside GM1. This was more evident in the enlargements of the corresponding boxes (*). Cell nuclei were marked
with DAPI.
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β-DG, ε-SG and cavin-1. These results suggest the possibility of the
occurrence of alternative UAPC/DAPC in other membrane domains.

3.3. UAPC–Cav-1 interaction in HUASMC

In order to evaluate whether components of the UAPC interact with
Cav-1 in HUASMC, a major structural component of the caveolae
domains [48], we performed reciprocal co-immunoprecipitation assays
using antibodies against utrophin or Cav-1 in total protein extracts
obtained from cell cultures (Fig. 4). Western blot analysis of the
immunoprecipitated proteins revealed the presence of utrophin,
β-DG, ε-SG, α-SMA, eNOS and Cav-1 proteins (Fig. 4A). These results
confirmed the interaction between UAPC components and Cav-1. Fur-
thermore, the interaction of Cav-1 and/or utrophin with cavin-1 was
also evident, another important component of the caveolae domains
[49]. Regarding dystrophin, the protein was only evident in the input
and supernatant of both co-immunoprecipitation assays (Fig. 4A). All
these results suggest the presence of a UAPC conformed by utrophin,
β-DG, ε-SG, eNOS, α-SMA, Cav-1 and cavin-1 proteins in caveolae do-
mains of HUASMC. With respect to the presence of an UAPC in
noncaveolae lipid raft domains, we did not observe a band of utrophin
and β-DG in the Western blot of the proteins immunoprecipitated
with an antibody against flotillin-1 (Fig. 4B). Negative control shows
that there was no detectable protein binding to beads not conjugated
with utrophin and Cav-1 antibody (data not shown).

3.4.α/β-DGdeficiency reduce NO synthesis and eNOS phosphorylation, and
affect cGMP signaling pathway

In a previous study our group proposed that UAPCs located in
caveolae and non-caveolae lipid raft domains of human umbilical vein
endothelial cells (HUVEC) may have a mechanosensory function that
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Fig. 5. Knockdown of α-DG reduce the NO synthesis, eNOS phosphorylation and the activa-
tion of PKG and VASP. A) Western blot and densitometry analysis demonstrating α/β-DG
knockdown(50%) in cells transfectedwith aα/β-DG iRNAas comparedwith cells transfected
with a control iRNA. B) NO amount in basal conditions (Control) or after 15 min stimulation
with 1 μM bradikynin (BK) in HUASMC transfected with irrelevant siRNA or α/β-DG siRNA.
C) Western blot analysis and densitometry analysis of eNOS nonphosphorylated and
phosphorylated (p-eNOS) in protein extracts of cells transfected with irrelevant siRNA or
α/β-DG and stimulated with 1 μM bradikynin. D) Lysates of HUASMC transfected with
irrelevant siRNA orα/β-DG and stimulatedwith 1 μMbradikyninwere immunoprecipitated
with an antibody against PKG. The presence of VASP in the immunoprecipitated proteinswas
determined by Western blot and the intensity of the bands was analyzed by densitometry.
E)Western blot and densitometry analysis of VASP nonphosphorylated and phosphorylated
(p-VASP) in protein extracts of cells transfected with irrelevant siRNA or α/β-DG and
stimulated with 1 μM bradikynin. Data are plotted as the average of three independent
experiments standard error and analyzed with ‘One Way Anova’ and Tukey as a post hoc
analysis. * = P b 0.05. ** = P b 0.01. NS = Not Significant.
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participates in the control of eNOS activity [50]. In order to evaluate the
physiologic role of the UAPC, present in the HUASMC, on the activity
of the eNOS, we knock down the α/β-DG proteins by a siRNA system.
α/β-DG deficiency (≈55%, Fig. 5A) induced a reduction of the eNOS
phosphorylated (eNOSpSer1177) by approximately 35% (Fig. 5B) as com-
pared to (−) siRNA after the stimulation with bradykinin (BK) 1 μM.
Besides, α/β-DG knockdown cells also presented a reduction in the NO
synthesis (≈20%, Fig. 5C) under the same conditions.

NO activates soluble guanylil cyclases and the synthesis of cGMP
[51], the increment of cellular cGMP activates the cGMP-dependent
protein kinase (PKG) [52], which in turn phosphorylates at Ser-239
the vasodilator-stimulated phosphoprotein (VASP) as a vasodilation
response [53]. In order to determine if the reduction in the synthesis
of NO observed in the α/β-DG knockdown cells affected the cGMP
signaling transduction pathway, we carried out immunoprecipita-
tion assays with an antibody against the PKG-1 protein. Western
blot analysis of the immunoprecipitated proteins showed a reduc-
tion of ≈39% in the interaction of this protein with VASP in cells
treated with the α/β-DG siRNA (Fig. 5D). Consequently, it was also
evident a decrement in the phosphorylation level of VASP (≈57%,
Fig. 5E).

4. Discussion

In striated muscle, the DAPC is a multimeric complex consisting of
subsarcolemmal (dystrophin and syntrophin) and transmembranal
proteins (α-,β-,γ-, δ-SG and SSPN and theα- andβ-DG) [54]. Utrophin,
the orthologue of dystrophin [55], also anchors these proteins to form a
UAPC [18,56]. Both complexes play a critical role in protecting muscle
cells from damage by connecting the extracellular matrix to the actin
cytoskeleton and in signal transduction pathways [57,58].

Patientswithmutations inβ-, δ-, andγ-SG developmuscular dystro-
phy that frequently is associated with DCM [59–62]. The presence of
muscular dystrophy with cardiomyopathy has also been observed in
SG mutant mice models [29–31]. Additional studies in β- and δ-SG
null mice have shown the disturbance of the SG–SSPN complex in
VSM, in addition to the presence of microvascular constrictions in arter-
ies of the heart, diaphragm, and kidney [63]. These findings highlight
the importance of the DAPC/UAPC in vascular function. Earlier studies
by our group demonstrated the co-localization of some members of
the UAPC/DAPC with Cav-1 in VSM [17].

In the present study we investigated the existence of a DAPC/
UAPC in the caveolae domains from HUASMC. Initially, the presence
of dystrophin and utrophin in HUASMC was identified by Western
blot, along with the other members of the DAPC/UAPC together
with Cav-1 and cavin-1. Although these results suggested the pres-
ence of DAPC or UAPC in caveolae domains of the plasma membrane,
confocal immunofluorescence analysis showed that utrophin—
instead of dystrophin—colocalized with the sphingolipid lipid raft
marker GM1. It has been observed that caveolin-3 co-fractionates
with dystrophin and certain members of the DAPC in the skeletal
muscle [64,65].

Our co-immunoprecipitation results revealed the existence of a
UAPC constituted by utrophin, β-DG, ε-SG, α-SMA, eNOS, Cav-1 and
cavin-1 proteins. The latter two proteins are major structural compo-
nents of the caveolae domains [49,66]. A previous co-localization
study has shown the presence of dystrophin in the caveolae domains
of nonvascular smooth muscle sarcolemma [67]. Additionally, Sharma
et al. [37] revealed the presence of a DAPC or dystrophin in caveolae do-
mains of nonvascular contractile smooth muscle cells and the direct in-
teraction of Cav-1 with β-DG in concert with anchorage to the actin
cytoskeleton. They also proposed implications of this caveolae DAPC in
mediate intracellular Ca2+ release. In the current report we observed
the presence of a UAPC in caveolae domains of VSM cells. Interestingly,
this complex, conformed by utrophin, β-DG, ε-SG, α-SMA, eNOS, Cav-1
and cavin-1, does not include other major members of the UAPC/DAPC.
Proteins such as β-SG, δ-SG, SSPN, as well as isoforms of dystrophin and
δ-SG [42,68] (Dp71 and δ-SG3 respectively), were located in non-lipid
raft domains. In addition, the research group of Dr. Crosbie-Watson
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has observed that SSPN overexpression facilitates the transportation of
the UAPC to the cell surface of skeletal muscle cells [69]. However, we
did not detect SSPN in the UAPC located in the caveolae domains of
VSM cell membrane; the protein was only evident in non-caveolae do-
mains. It is possible to speculate that SSPN is a component of other
DAPC/UAPC and that it may be important for the transport and location
of these non-caveolae complexes. For instance, in normal skeletal mus-
cle the DAPC displays a clear difference in its distribution pattern as
compared with the UAPC; whereas the DAPC is found along the sarco-
lemma, theUAPC accumulates at the neuromuscular andmyotendinous
junctions [18,55,70]. Likewise, it has been reported the presence of
Dp71 and members of the DAP in the nuclear envelope of C2C12 cells
and a possible participation of these proteins in nuclear envelope asso-
ciated functions [71]. Since our Western blot analysis of the gradient
membrane fractions showed the presence of dystrophin, utrophin and
Dp71 in non-lipid raft membrane domains, it is highly probable the ex-
istence of diverseDAPC/UAPC complexeswithdifferent combinations of
DAP/UAPmembers in distinct external and internal cellularmembranes
of the HUASMC.

The caveolae UAPC revealed in this studywas similar to the one pre-
viously determined by our group in caveolae- and non-caveolae-related
domains of human umbilical endothelial cells (HUVECs) [50]. Remark-
ably, in both cases eNOS was a component of the UAPC. In regard to
the complex of HUVECs, we previously disclosed that it may have a
mechanosensory function regulating eNOS activity, whichmay partially
control vascular function [50]. In this regard, interestingly we observed
that the deficiency of α/β-DG in HUASMC induced the reduction of NO
synthesis and the phosphorylated active form of eNOS after BK treat-
ment. Likewise, this reduction was accompanied of a decrease on the
cGMP signaling cascade that included the lessening of the interaction
of PKG 1 with VASP, and the consequent decrease of the phosphorylat-
ed/active form of VASP (p-Ser269). All PKG familymembers are activat-
ed by cellular cGMP increase [52], and the active form of these proteins
phosphorylate Ser-239 of theVASP [53]. Likewise, cellular cGMP increases
through the activation of guanylil cyclases, a process known to
occur in part through nitric oxide (NO) signaling [72]. In addition to
well established roles in platelet activation and smooth muscle
relaxation, PKG signaling is important in many biological processes in-
cluding cardiac contractility, axon guidance, bone growth, contraction of
intestinal smooth muscle and erectile dysfunction [73]. Besides, it has
been demonstrated that the presence of eNOS and the NO production in
VSM cells in vitro, inhibited cell proliferation which favors the mainte-
nance of the blood vessel wall and vascular function [74,75], and that in-
hibition of eNOS in VSM augmented constriction of rat deep femoral
artery [76]. Taking into account all these observations, we proposed that
theUAPC present in the lipid raft domains of HUASMCplays an important
role in the regulatory activity of the eNOS and in the function of the vas-
cular smooth muscle.

In summary, our current results confirm the existence of a UAPC in
lipid raft domains in VSM cells conformed by utrophin, β-DG, ε-SG, α-
SMA, eNOS, Cav-1 and cavin-1 that may regulate the activity of eNOS
which, in turn, may participate in the vascular function; whereas in
non-lipid raft domains existence of several components of the DAPC/
UAPC was evident, suggesting the hypothetical presence of alternative
complexes in plasma membrane of HUASMC with different lipid
compositions (caveolae and non-caveolae domains). Identification of
DAPC/UAPC in sarcolemmal regions with different lipid compositions
and caveolae and non-caveolae domains could contribute to the under-
standing of their role in the physiology of VSM and its possible partici-
pation in distinct cardiovascular pathologies.
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