32 research outputs found

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder

    Get PDF
    BACKGROUND: Autism is a behavioral disorder with impaired social interaction, communication, and repetitive and stereotypic behaviors. About 5–10 % of individuals with autism have 'secondary' autism in which an environmental agent, chromosome abnormality, or single gene disorder can be identified. Ninety percent have idiopathic autism and a major gene has not yet been identified. We have assessed the incidence of chromosome abnormalities and Fragile X syndrome in a population of autistic patients referred to our laboratory. METHODS: Data was analyzed from 433 patients with autistic traits tested using chromosome analysis and/or fluorescence in situ hybridization (FISH) and/or molecular testing for fragile X syndrome by Southern and PCR methods. RESULTS: The median age was 4 years. Sex ratio was 4.5 males to 1 female [354:79]. A chromosome (cs) abnormality was found in 14/421 [3.33 %] cases. The aberrations were: 4/14 [28%] supernumerary markers; 4/14 [28%] deletions; 1/14 [7%] duplication; 3/14 [21%] inversions; 2/14 [14%] translocations. FISH was performed on 23 cases for reasons other than to characterize a previously identified cytogenetic abnormality. All 23 cases were negative. Fragile-X testing by Southern blots and PCR analysis found 7/316 [2.2 %] with an abnormal result. The mutations detected were: a full mutation (fM) and abnormal methylation in 3 [43 %], mosaic mutations with partial methylation of variable clinical significance in 3 [43%] and a permutation carrier [14%]. The frequency of chromosome and fragile-X abnormalities appears to be within the range in reported surveys (cs 4.8-1.7%, FRAX 2–4%). Limitations of our retrospective study include paucity of behavioral diagnostic information, and a specific clinical criterion for testing. CONCLUSIONS: Twenty-eight percent of chromosome abnormalities detected in our study were subtle; therefore a high resolution cytogenetic study with a scrutiny of 15q11.2q13, 2q37 and Xp23.3 region should be standard practice when the indication is autism. The higher incidence of mosaic fragile-X mutations with partial methylation compared to FRAXA positive population [50% vs 15–40%] suggests that faint bands and variations in the Southern band pattern may occur in autistic patients

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Expanded DMPK repeats in dizygotic twins referred for diagnosis of autism versus absence of expanded DMPK repeats at screening of 330 children with autism

    No full text
    Zuzana Musova,1 Miroslava Hancarova,1 Marketa Havlovicova,1 Radka Pourova,1 Michal Hrdlicka,2 Josef Kraus,3 Marie Trkova,4 David Stejskal,4 Zdenek Sedlacek1 1Department of Biology and Medical Genetics, 2Department of Child Psychiatry, 3Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, 4Gennet, Centre for Fetal Medicine, Prague, Czech Republic Abstract: Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1. Keywords: autism, myotonic dystrophy type 1, DMPK gene, genetic testing, comorbidit

    HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain.

    Get PDF
    Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain developmentLachlan A. Jolly, Lam Son Nguyen, Deepti Domingo, Ying Sun, Simon Barry, Miroslava Hancarova, Pavlina Plevova, Marketa Vlckova, Marketa Havlovicova, Vera M. Kalscheuer, Claudio Graziano, Tommaso Pippucci, Elena Bonora, Zdenek Sedlacek, and Jozef Gec

    Telemedicine strategy of the European Reference Network ITHACA for the diagnosis and management of patients with rare developmental disorders

    No full text
    Background: The European Reference Networks, ERNs, are virtual networks for healthcare providers across Europe to collaborate and share expertise on complex or rare diseases and conditions. As part of the ERNs, the Clinical Patient Management System, CPMS, a secure digital platform, was developed to allow and facilitate web-based, clinical consultations between submitting clinicians and relevant international experts. The European Reference Network on Intellectual Disability, TeleHealth and Congenital Anomalies, ERN ITHACA, was formed to harness the clinical and diagnostic expertise in the sector of rare, multiple anomaly and/or intellectual disability syndromes, chromosome disorders and undiagnosed syndromic disorders. We present the first year results of CPMS use by ERN ITHACA as an example of a telemedicine strategy for the diagnosis and management of patients with rare developmental disorders. Results: ERN ITHACA ranked third in telemedicine activity amongst 24 European networks after 12 months of using the CPMS. Information about 28 very rare cases from 13 different centres across 7 countries was shared on the platform, with diagnostic or other management queries. Early interaction with patient support groups identified data protection as of primary importance in adopting digital platforms for patient diagnosis and care. The first launch of the CPMS was built to accommodate the needs of all ERNs. The ERN ITHACA telemedicine process highlighted a need to customise the CPMS with network-specific requirements. The results of this effort should enhance the CPMS utility for telemedicine services and ERN-specific care outcomes. Conclusions: We present the results of a long and fruitful process of interaction between the ERN ITHACA network lead team and EU officials, software developers and members of 38 EU clinical genetics centres to organise and coordinate direct e-healthcare through a secure, digital platform. The variability of the queries in just the first 28 cases submitted to the ERN ITHACA CPMS is a fair representation of the complexity and rarity of the patients referred, but also proof of the sophisticated and variable service that could be provided through a structured telemedicine approach for patients and families with rare developmental disorders. Web-based approaches are likely to result in increased accessibility to clinical genomic services
    corecore