603 research outputs found

    In-flight calibration of the high-gain antenna pointing for the Mariner Venus-Mercury 1973 spacecraft

    Get PDF
    The methods used to in-flight calibrate the pointing direction of the Mariner Venus-Mercury 1973 spacecraft high gain antenna and the achieved antenna pointing accuracy are described. The overall pointing calibration was accomplished by performing calibration sequences at a number of points along the spacecraft trajectory. Each of these consisted of articulating the antenna about the expected spacecraft-earth vector to determine systematic pointing errors. The high gain antenna pointing system, the error model used in the calibration, and the calibration and pointing strategy and results are discussed

    Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Get PDF
    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    Record RF performance of standard 90 nm CMOS technology

    Get PDF
    We have optimized 3 key RF devices realized in standard logic 90 nm CMOS technology and report a record performance in terms of n-MOS maximum oscillation frequency f/sub max/ (280 GHz), varactor tuning range and varactor and inductor quality factor

    Hidden spin-current conservation in 2d Fermi liquids

    Get PDF
    We report the existence of regimes of the two dimensional Fermi liquid that show unusual conservation of the spin current and may be tuned by varying some parameter like the density of fermions. We show that for reasonable models of the effective interaction the spin current may be conserved in general in 2d, not only for a particular regime. Low temperature spin waves propagate distinctively in these regimes and entirely new ``spin-acoustic'' modes are predicted for scattering-dominated temperature ranges. These new high-temperature propagating spin waves provide a clear signature for the experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR

    Implementation of World Health Organization Integrated Management of Childhood Illnesses (IMCI) Guidelines for the Assessment of Pneumonia in the Under 5s in Rural Malawi

    Get PDF
    The Cooking and Pneumonia Study (CAPS) is a pragmatic cluster-level randomized controlled trial of the effect of an advanced cookstove intervention on pneumonia in children under the age of 5 years (under 5s) in Malawi (www.capstudy.org). The primary outcome of the trial is the incidence of pneumonia during a two-year follow-up period, as diagnosed by healthcare providers who are using the World Health Organization (WHO) integrated management of childhood illnesses (IMCI) pneumonia assessment protocol and who are blinded to the trial arms. We evaluated the quality of pneumonia assessment in under 5s in this setting via a cross-sectional study of provider-patient encounters at nine outpatient clinics located within the catchment area of 150 village-level clusters enrolled in the trial across the two study locations of Chikhwawa and Karonga, Malawi, between May and June 2015 using the IMCI guidelines as a benchmark. Data were collected using a key equipment checklist, an IMCI pneumonia knowledge test, and a clinical evaluation checklist. The median number of key equipment items available was 6 (range 4 to 7) out of a possible 7. The median score on the IMCI pneumonia knowledge test among 23 clinicians was 75% (range 60% to 89%). Among a total of 176 consultations performed by 15 clinicians, a median of 9 (range 3 to 13) out of 13 clinical evaluation tasks were performed. Overall, the clinicians were adequately equipped for the assessment of sick children, had good knowledge of the IMCI guidelines, and conducted largely thorough clinical evaluations. We recommend the simple pragmatic approach to quality assurance described herein for similar studies conducted in challenging research settings

    Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?

    Get PDF
    A major challenge in ecology is forecasting the effects of species' extinctions, a pressing problem given current human impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific dynamical model of species' interactions, because it identifies the subset of coextinctions common to all possible models, those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous measures of importance based on the concept of “hubs” or number of connections, as well as centrality measures, do not identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the analysis of extinction risk in ecosystems

    The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review

    Get PDF
    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors
    corecore