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We report the existence of regimes of the two-dimensional Fermi liquid that show unusual
conservation of the spin current and may be tuned by varying some parameter such as the densit
of fermions. We show that for reasonable models of the effective interaction the spin current may be
conserved in general in 2D, not only for a particular regime. Low-temperature spin waves propagate
distinctively in these regimes and entirely new “spin-acoustic” modes are predicted for scattering-
dominated temperature ranges. These new high-temperature propagating spin waves provide a cle
signature for the experimental search of such regimes. [S0031-9007(99)09124-3]
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Fermi-liquid theory (FLT) was first introduced by
Landau [1] and further developed to include spin wave
a long time ago [2]. The progress of FLT in 3D reveale
that it is one of the broader theories in condensed mat
physics, explaining the experimental results of a wid
range of different systems. Recently, interest in FL
regained momentum, driven in part by the discove
of high-temperature superconductors and also by t
refinement of experimental techniques in low-dimension
physics. While many results on the (ab)normal phases
the former allow one interpretation that casts doubts o
the validity of FLT in 2D [3], the latter has been consoli
dating a source of examples of practical 2D systems th
behave as predicted by 2D FLT, as can be apprecia
in the experiments reported in3He films [4,5]. This also
seems to be the case for doped semiconductors, wh
thickness and doping can be controlled. Experiments
these charged systems have directly observed expected
Fermi-liquid behavior in GaAs heterostructures [6]. Thi
comes from extracting the quasiparticle lifetimes from
the tunneling peaks in the current-voltage profile of tw
biased 2D doped semiconductor contacts with a quantu
well between them. The result is the one predicted by 2
FLT [7].

Spin waves were observed in bulk alkali metals som
three decades ago by conduction-electron spin resona
(CESR) techniques [8], confirming the predictions of FL
[9]. Later, using nuclear magnetic resonance (NMR
in bulk 3He, Ref. [10] confirmed the existence of the
Leggett-Rice effect formerly predicted [11]. The suppre
sion of the Leggett-Rice effect was also indirectly ob
served for a particular region of the parameter space
bulk 3He-4He mixtures [12–14], which was pointed ou
in Ref. [15]. All of these results agree with the known
fact that spin current is not conserved in 3D [16]. Th
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majority of these experiments were not repeated for
systems up to this date.

The central purpose of this Letter is to present ex
results indicating that spin current may be a conserv
quantity in 2D Fermi liquids, at least for some region
of the parameter space. We will see that for microsco
models that assume short range potentials for the effec
interaction spin-current conservation holds for the ent
parameter space, so that such models validate the b
statement that spin current is conserved in 2D (not o
at particular regimes). This is rather compelling sin
our results are for the spin channel, and the transit
from short to long range in the charge channel should
essentially modify the physics presented here, provid
one has no broken symmetries. We also calculate
dispersions of transverse spin waves under this “sp
space Galilean invariance” and find that an experimen
observation of these new collective modes will sho
rather distinct features that make such regimes easy
identify. Before proceeding, we would like to give
precise meaning for 2D in the context of this articl
Let us establish that the system is 2D whenever one
its three dimensions is comparable to or less than
quasiparticle’s typical wavelength.

At low temperatures, the phase space available for s
tering in 3D is a spherical shell and the incoming m
menta are not, in general, coplanar with the outgoing p
As a result, the values of the spin currents carried
two quasiparticles with antiparallel spins (singlet cha
nel), before and after they collide, are not related,jin ;
s1p1 1 s2p2 ­ p1 2 p2 fi jout ­ p3 2 p4, where1, 2
and3, 4 refer to incoming and outgoing momenta. Ifq is
the total exchange of momentum in the collision, we c
write jout ­ jin 1 qsfd, wheref is the angle between
the scattering planes. While the triplet channel conser
© 1999 The American Physical Society 3851
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spin current trivially, the two scattering processes in t
singlet channel are completely accounted for by fixin
the spins on all momenta and varyingf. One can turn
from small momentum exchange, nearf ­ 0 (forward),
continuously to largeq , 2kF , nearf ­ p (backward).
Since jout points in a random direction relative tojin,
we can say that the spins “walk” randomly througho
the system and hence spin transport is diffusive. In 2
however, due to the reduced phase space, one is
with only three possibilities,jout ­ jin, jout ­ 2jin, and
jinsk ­ 0d fi joutsk ­ 0d, wherek is the total momen-
tum. This latter region of the phase space brings no co
tributions to the scattering integral to leading order
temperature [7,17,18]. In fact, as we see below, the sc
tering amplitude fork ­ 0 processes is zero in a regim
that conserves spin current, so that we are left with on
two scattering processes: forward, which conserves s
current, and backward, which flips the direction of sp
current. Hence, spin current is not conserved in 2D
long as the balance between two clearly distinguisha
processes remains.

To study the circumstances which allow this balance
break in such a way as to favor spin-current conservati
we consider a planar Fermi liquid with a weak magnetiz
tion perpendicular to the plane and whose gradient is su
that =M ­ j=Mjẑ, where ẑ is an in-plane unit vector.
The scattering integral for the Landau kinetic equation
FLT in 2D can, in general, be expanded in circular ha
monicsclsxd,

Ifnpsg ­
X

l

Ilclsp ? ẑd ,

where the amplitudes depend on the quasiparticle ene
For spin-diffusion processes, whileI0 ­ 0 due to spin
conservation in collisions, the symmetry of the distribu
tion function implies that all but the first higher order an
gular contributions are small enough so that we can wr
Il ­ I1dl1. In 2D this dominant amplitude can be writte
explicitly in terms of the low-frequency four point vertex
functionG at k ­ 0 andk ­ 2kF ,

I1 ­ Cfu1sxpdS 1 u2sxpd jG
0
"##"j

2g , (1)

where

C ~ sj=Mj

√
T
TF

!2 É
ln

√
T
TF

! É
,

S ­
X

spins,k­0,2kF

jGk
s1s2s3s4

j2ds11s2,s31s4 ,

and ui are functions of the normalized energyxp ­
sep 2 mdykBT . Equation (1) yieldsX

sp
spIfnpsg ~ jG

0
"##"j

2. (2)

This result comes from the vanishing of the term propo
tional to S in Eq. (1) under energy integration. Detail
will be presented elsewhere but they follow from a simil
3852
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analysis of the scattering integral in 2D found in Refs. [7
and [18]. The fact that in 2D one can write exact ex
pressions in terms of the Landau parameters for the ver
part [19] yields closed expressions in terms of this func
tion at particular points of the phase space. It is clear fro
Eq. (2) that spin current is conservedexactlyif G

0
"##" ­ 0.

In the same spirit, the diffusion coefficient may also b
expressed in terms of the vertex part [18] for a weak
polarized Fermi liquid, and whenG0

"##" ­ 0 it diverges, as
it should if spin current is conserved.

To see thatG0
"##" may in fact be zero, we start with a

dilute-gas result [20] that givesGk­0
t matrix ­ 0. This result

comes from resumming the logarithm divergences for a
arbitrary spin independent short range potential, similar
what is done in 3D [21]. This is a physically compelling
starting point, since, as mentioned earlier, one does n
expect the physics in the spin channel to radically chan
in the absence of broken symmetries for potentials wi
longer tails in the charge channel. We plug thet matrix
result for an arbitraryk in the Bethe-Salpeter equation
[19] for the vertex function and obtainG0

"##" ­ 0. This
is equivalent to including contributions from particle-hole
correlations to all orders in the coupling constantsgd in
addition to particle-particle ladder bubbles to all orders an
particle-hole ladder bubbles up to second order that a
included inG

k
t matrix. Contributions from other diagrams,

if not vanishing at the particular pointk ­ 0, will be small,
leading to a very long diffusion relaxation time.

For this result the spin-diffusion relaxation time due t
I1 is infinite so that the symmetry due to higher orde
amplitudes becomes dominant. We stress that even in
more general scenario whereG

0
"##" remains small but finite

it suffices that it is small enough to render the relaxatio
time associated withI1 long compared to the scales arising
from higher angular terms. Under such a condition sp
current will be conserved in the relevant finite time scale
the system will relax due to a higher order process th
we call “spin viscosity” in analogy to what happens with
sound.

We discussed the possibility that a new conservatio
exists in 2D Fermi liquids in general. This is not the only
possibility. We now turn to a more phenomenologica
analysis of the particular regimes that conserve sp
current in 2D. This is based on the fact that the conditio
for G

0
"##" ­ 0, if not valid in general in 2D, can be

achievedby tuning the appropriate values of the Landau
parameters. To be more specific, leta be the Greens’
function quasiparticle residue and letNs0d be the density
of states at the Fermi surface. For a 2D Fermi liquid w
can write [18,19]

N2s0da2jG
0
"##"j

2 ­

"
1X̀

l­2`

s21dlclA
a
l

#2

, (3)

where Aa
l are the antisymmetric scattering amplitude

that relate to the Landau coefficients throughAa
l ­ Fa

l y
s1 1 clF

a
l d and cl ­ 1ys2jlj 1 1d. A quick technical
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remark about our choice of the 2D basis will avoi
confusion. We chooseclsp ? ẑd ­ cleilu . This shifted
basis leads mostly to formulas that look identical t
their 3D counterparts, and is only a matter of conv
nience. We see from Eq. (3) that regions of the param
ter space which conserve spin currentexactly are tuned
when clA

a
l ­ 2dl0cl11Aa

l11, for l ­ 0, 2, 4, . . . , clA
a
l ­

2dl0cl13Aa
l13, for l ­ 0, 1, 2, . . . , and for an infinite num-

ber of other possibilities. One can also keep only th
first few scattering amplitudes following another dilute
gas calculation for which thenth Landau coefficient is
proportional togn [22]. One then finds thatG0

"##" ­ 0 for
specific combinations of the Landau parameters. For
stance, when the first two Landau parameters are s
that Fa

0 ­ 2Fa
1 y3s1 2 Fa

1 y3d, the contribution from the
first two terms in the sum vanishes and one is left on
with terms that are of orderg2 or higher. Throughout this
article, the 2D coupling constant,g ; 21y2 lnskFasd,
arises from microscopic models based on short-range
tentials with characteristic lengthas. One can easily
verify that, for the majority of choices made to give
G

0
"##" ­ 0, one always finds a very reasonable value f

g (between0.1 and 0.4). It is clear that these regimes
may be tuned by externally varying some parameter su
as the density. This particular range of the coupling co
stant corresponds to second-layer coverage densities
tween5 and18 3 1013 cm22 in the data from3He films
on Grafoil experiments [23].

Given the infinite number of combinations that lead t
G

0
"##" ­ 0, we feel compelled to investigate the signature

that should indicate the experimental tuning of suc
regimes in the spin-wave modes. The dispersion relatio
for transverse spin waves are the simpler and broa
objects that we can think of for this purpose. They may
used to figure out the form of the effective “diffusion” (in
this case we should say effective “viscosity”) equivale
to the Platzman and Wolff result for charged system
so that CESR experiments can be done in electro
planes. We will hence leave the consequences of m
sophisticated phenomena, such as the Leggett-Rice ef
[11], for future publications. Also, the detailed analys
of the dispersion relations will be published in a longe
article; here we show only the results and outline th
derivation.

Spin-current conservation equalizes the spin and cha
channels regarding the number of conserved quantiti
As a consequence, we expect propagation of spin wa
to become analogous to sound propagation. This
partly true; the presence of an additional scale set
the external magnetic field keeps the propagation
spin waves distinct from sound, but they present vario
new common features. We project out the Landa
kinetic equation [16] on the 2D basis, and solve fo
the Fermi-surface distortions associated with transve
spin waves in a relaxation time scheme. ForG

0
"##" ­

0, the relaxation time approximation is written asIl ­
d
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s1 2 dl0 2 dl1dvsh, where we have introduced the spin
viscous relaxation timev21

sh. The dispersion relations
are calculated for a weak but finite magnetic field suc
that in the long wavelength limitqyF ø vL (the Larmor
frequency). For bulk3He this corresponds to magnetic
fields between0.25 and1 T. The results are

Dvl­0 ­ 2
a0

2lvL
sqyFd2 1

√
1

a1
2

ll2

2z

!

3
a

2
0

4l3v
3
L

sqyFd4,

Dvl­1 ­ vLla1 1

"
1 1

s1 1 l2a2d
2s1 2 za2yla1d

#

3
a0

2lvL
sqyFd2,

and

Dvl­2 ­ vLza2 2
s1 1 l2a2d

2s1 2 za2yla1d
a0

2lvL
sqyFd2,

whereal ­ 1 1 clF
a
l . In addition to the usual strength

l ; a
21
0 2 a

21
1 , we definedl2 ; a

21
0 2 a

21
2 . Here

Dv ­ v 2 vL and z ; l2 2 ivshyvL. We write
the lowest distortions to higher order inq since these
modes attenuate only to relative orderq2 under the
new condition of spin-current conservation. A third
dispersion branch emerges as a result of the higher or
“spin-viscous” attenuation. We see that the quadrupol
fluctuations show similar behavior to the lower orde
distortions in a nonconserving regime: It propagates
low T and is purely damped at highT . The dipole
modes, however, propagate almost undamped both at h
and low T ’s, showing more attenuation for intermediate
temperatures. The density fluctuation propagates alm
undamped and with the same dispersion for anyT to
leading order inq, and is weakly damped to relative
order q2 at intermediate temperatures. Hence thel ­ 0
and l ­ 1 modes propagate both in the collisionless an
hydrodynamic regimes. This rather unusual behavior
the propagation of the two first spin-wave modes is
direct consequence of spin-current conservation and it
analogous to what happens in the propagation of soun
The ratio vshyvL governs the interplay between the
collisionless and hydrodynamic regimes, and a peak in t
attenuation occurs whenvshyvL ­ l2 for both modes.

For completeness, we address some regimes of
parameter space that are of particular interest if the
coexist with the conservation of spin current. We d
not wish to imply here that these additional regime
exist, only to present the changes that should be expec
if they do. We look at the regime for whichl ­ 0.
This regime where the interaction strength changes si
was observed in bulk3He-4He mixtures [12–14], and
it is known to show a remarkable suppression of th
Leggett-Rice effect [11,15]. Forl ­ 0, the relevant
3853
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changes occur in the lowest two branches which collap
into two physically equivalent branches corresponding
soundlike spin waves propagating in opposite directio
with velocity a0yFy

p
2. These modes propagate at an

temperature to leading order inq. The attenuation in
this case is of relative orderq and also presents a peak
at vshyvL ­ l2. These modes are thus analogous
sound in the sense that besides having a linear dispers
they undergo a transition from a low-temperature zer
sound-like regime into a hydrodynamic regime as on
raises the temperature.

The region of the parameter space for whichl2 ­ 0
is readily obtained and brings no additional physics
Fa

0 fi Fa
1 y3. However, for l ­ l2 ­ 0 we have the

interesting new feature that the attenuation of the tw
lowest order distortions decrease asT increases. This
may be understood by recalling that the strength
the quasiparticles’ interactions is measured byl and
l2. If both parameters are zero then no zero-sound-li
modes are expected to propagate at lowT . However, as
scattering increases withT , spin currents are favored in a
conserving regime.

In conclusion, we presented the possibility that sp
current is conserved in 2D Fermi liquids, if not in genera
for some particular regimes. This is basically due t
the restricted geometry combined with the degeneracy
the Fermi surface. We showed some consequences
conservation brings to the propagation of transverse sp
waves in such regimes, and predicted that spin wav
that are known to occur only for very lowT will also
propagate in scattering-dominated regimes. This is t
most remarkable property of such regimes and shou
serve to clearly distinguish what we call spin-viscou
relaxation processes associated with such regimes fr
ordinary spin-diffusion relaxation. Nuclear magneti
resonance experiments probing the spin relaxation w
show sharper absorption peaks for the two lowest mod
due to the weak attenuation. As one scans temperatu
within the Fermi-liquid regime, NMR peaks are expecte
to widen up to a maximum width and then to becom
sharp again, indicating the presence of a maximum val
for the attenuation. The sole presence of a peak at hig
temperatures will provide evidence for this conservatio
in 2D. The immediate candidate systems for such expe
ments are helium films, such as the ones pointed out h
[5,23]. The existence of further consequences both
helium layers and in 2D Fermi systems in general, is a
open question.
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