236 research outputs found

    Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study

    Get PDF
    Although often clinically indistinguishable in the early stages, Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD

    Neurobiological degeneracy and affordance perception support functional intra-individual variability of inter-limb coordination during ice climbing

    Get PDF
    This study investigated the functional intra-individual movement variability of ice climbers differing in skill level to understand how icefall properties were used by participants as affordances to adapt inter-limb coordination patterns during performance. Seven expert climbers and seven beginners were observed as they climbed a 30 m icefall. Movement and positioning of the left and right hand ice tools, crampons and the climber's pelvis over the first 20 m of the climb were recorded and digitized using video footage from a camera (25 Hz) located perpendicular to the plane of the icefall. Inter-limb coordination, frequency and types of action and vertical axis pelvis displacement exhibited by each climber were analysed for the first five minutes of ascent. Participant perception of climbing affordances was assessed through: (i) calculating the ratio between exploratory movements and performed actions, and (ii), identifying, by self-confrontation interviews, the perceptual variables of environmental properties, which were significant to climbers for their actions. Data revealed that experts used a wider range of upper and lower limb coordination patterns, resulting in the emergence of different types of action and fewer exploratory movements, suggesting that effective holes in the icefall provided affordances to regulate performance. In contrast, beginners displayed lower levels of functional intra-individual variability of motor organization, due to repetitive swinging of ice tools and kicking of crampons to achieve and maintain a deep anchorage, suggesting lack of perceptual attunement and calibration to environmental properties to support climbing performanc

    Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    Get PDF
    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC

    Regulating Factors of PrPres Glycosylation in Creutzfeldt-Jakob Disease - Implications for the Dissemination and the Diagnosis of Human Prion Strains

    Get PDF
    OBJECTIVE: The glycoprofile of pathological prion protein (PrP(res)) is widely used as a diagnosis marker in Creutzfeldt-Jakob disease (CJD) and is thought to vary in a strain-specific manner. However, that the same glycoprofile of PrP(res) always accumulates in the whole brain of one individual has been questioned. We aimed to determine whether and how PrP(res) glycosylation is regulated in the brain of patients with sporadic and variant Creutzfeldt-Jakob disease. METHODS: PrP(res) glycoprofiles in four brain regions from 134 patients with sporadic or variant CJD were analyzed as a function of the genotype at codon 129 of PRNP and the Western blot type of PrP(res). RESULTS: The regional distribution of PrP(res) glycoforms within one individual was heterogeneous in sporadic but not in variant CJD. PrP(res) glycoforms ratio significantly correlated with the genotype at codon 129 of the prion protein gene and the Western blot type of PrP(res) in a region-specific manner. In some cases of sCJD, the glycoprofile of thalamic PrP(res) was undistinguishable from that observed in variant CJD. INTERPRETATION: Regulations leading to variations of PrP(res) pattern between brain regions in sCJD patients, involving host genotype and Western blot type of PrP(res) may contribute to the specific brain targeting of prion strains and have direct implications for the diagnosis of the different forms of CJD

    Spatial patterns of the tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is characterized neuropathologically by neuronal loss, gliosis, and the presence of tau-immunoreactive neuronal and glial cell inclusions affecting subcortical and some cortical regions. The objectives of this study were to determine (1) the spatial patterns of the tau-immunoreactive pathology, viz., neurofibrillary tangles (NFT), oligodendroglial inclusions (GI), tufted astrocytes (TA), and Alzheimer's disease-type neuritic plaques (NP) in PSP and (2) to investigate the spatial correlations between the histological features. Post-mortem material of cortical and subcortical regions of eight PSP cases was studied. Spatial pattern analysis was applied to the NFT, GI, TA, NP, abnormally enlarged neurons (EN), surviving neurons, and glial cells. NFT, GI, and TA were distributed either at random or in regularly distributed clusters. The EN and NP were mainly randomly distributed. Clustering of NFT and EN was more frequent in the cortex and subcortical regions, respectively. Variations in NFT density were not spatially correlated with the densities of either GI or TA, but were positively correlated with the densities of EN and surviving neurons in some regions. (1) NFT were the most widespread tau-immunoreactive pathology in PSP being distributed randomly in subcortical regions and in regular clusters in cortical regions, (2) GI and TA were more localized and exhibited a regular pattern of clustering in subcortical regions, and (3) neuronal and glial cell pathologies were not spatially correlated. © 2012 Springer-Verlag

    The Vascular Impairment of Cognition Classification Consensus Study

    Get PDF
    Introduction: Numerous diagnostic criteria have tried to tackle the variability in clinical manifestations and problematic diagnosis of vascular cognitive impairment (VCI) but none have been universally accepted. These criteria have not been readily comparable, impacting on clinical diagnosis rates and in turn prevalence estimates, research, and treatment. / Methods: The Vascular Impairment of Cognition Classification Consensus Study (VICCCS) involved participants (81% academic researchers) from 27 countries in an online Delphi consensus study. Participants reviewed previously proposed concepts to develop new guidelines. / Results: VICCCS had a mean of 122 (98–153) respondents across the study and a 67% threshold to represent consensus. VICCCS redefined VCI including classification of mild and major forms of VCI and subtypes. It proposes new standardized VCI-associated terminology and future research priorities to address gaps in current knowledge. / Discussion: VICCCS proposes a consensus-based updated conceptualization of VCI intended to facilitate standardization in research

    Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection

    Get PDF
    In vivo imaging of fibrillar β-amyloid deposits may assist clinical diagnosis of Alzheimer's disease (AD), aid treatment selection for patients, assist clinical trials of therapeutic drugs through subject selection, and be used as an outcome measure. A recent phase III trial of [(18)F]flutemetamol positron emission tomography (PET) imaging in 106 end-of-life subjects demonstrated the ability to identify fibrillar β-amyloid by comparing in vivo PET to post-mortem histopathology. Post-mortem analyses demonstrated a broad and continuous spectrum of β-amyloid pathology in AD and other dementing and non-dementing disease groups. The GE067-026 trial demonstrated 91% sensitivity and 90% specificity of [(18)F]flutemetamol PET by majority read for the presence of moderate or frequent plaques. The probability of an abnormal [(18)F]flutemetamol scan increased with neocortical plaque density and AD diagnosis. All dementia cases with non-AD neurodegenerative diseases and those without histopathological features of β-amyloid deposits were [(18)F]flutemetamol negative. Majority PET assessments accurately reflected the amyloid plaque burden in 90% of cases. However, ten cases demonstrated a mismatch between PET image interpretations and post-mortem findings. Although tracer retention was best associated with amyloid in neuritic plaques, amyloid in diffuse plaques and cerebral amyloid angiopathy best explain three [(18)F]flutemetamol positive cases with mismatched (sparse) neuritic plaque burden. Advanced cortical atrophy was associated with the seven false negative [(18)F]flutemetamol images. The interpretation of images from pathologically equivocal cases was associated with low reader confidence and inter-reader agreement. Our results support that amyloid in neuritic plaque burden is the primary form of β-amyloid pathology detectable with [(18)F]flutemetamol PET imaging
    • …
    corecore