47 research outputs found

    Predicting Progressive Glaucomatous Optic Neuropathy Using Baseline Standard Automated Perimetry Data

    Get PDF
    PURPOSE. To test the hypothesis that specific locations and patterns of threshold findings within the visual field have predictive value for progressive glaucomatous optic neuropathy (pGON). METHODS. Age-adjusted standard automated perimetry thresholds, along with other clinical variables gathered at the initial examination of 168 individuals with high-risk ocular hypertension or early glaucoma, were used as predictors in a classification tree model. The classification variable was a determination of pGON, based on longitudinally gathered stereo optic nerve head photographs. Only data for the worse eye of each individual were included. Data from 100 normal subjects were used to test the specificity of the models. RESULTS. Classification tree models suggest that patterns of baseline visual field findings are predictive of pGON with sensitivity 65% and specificity 87% on average. Average specificity when data from normal subjects were run on the models was 69%. CONCLUSIONS. Classification trees can be used to determine which visual field locations are most predictive of poorer prognosis for pGON. Spatial patterns within the visual field convey useable predictive information, in most cases when thresholds are still well within the classically defined normal range. (Invest Ophthalmol Vis Sci. 2009;50:674 -680

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2)

    Get PDF
    OBJECTIVES: We sought to update our 2015 work in the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS), considering new evidence and topic areas that were not previously addressed. DESIGN: International consensus conference series involving 52 multidisciplinary international content experts in PARDS and four methodology experts from 15 countries, using consensus conference methodology, and implementation science. SETTING: Not applicable. PATIENTS: Patients with or at risk for PARDS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eleven subgroups conducted systematic or scoping reviews addressing 11 topic areas: 1) definition, incidence, and epidemiology; 2) pathobiology, severity, and risk stratification; 3) ventilatory support; 4) pulmonary-specific ancillary treatment; 5) nonpulmonary treatment; 6) monitoring; 7) noninvasive respiratory support; 8) extracorporeal support; 9) morbidity and long-term outcomes; 10) clinical informatics and data science; and 11) resource-limited settings. The search included MEDLINE, EMBASE, and CINAHL Complete (EBSCOhost) and was updated in March 2022. Grading of Recommendations, Assessment, Development, and Evaluation methodology was used to summarize evidence and develop the recommendations, which were discussed and voted on by all PALICC-2 experts. There were 146 recommendations and statements, including: 34 recommendations for clinical practice; 112 consensus-based statements with 18 on PARDS definition, 55 on good practice, seven on policy, and 32 on research. All recommendations and statements had agreement greater than 80%. CONCLUSIONS: PALICC-2 recommendations and consensus-based statements should facilitate the implementation and adherence to the best clinical practice in patients with PARDS. These results will also inform the development of future programs of research that are crucially needed to provide stronger evidence to guide the pediatric critical care teams managing these patients.</p

    Theoretical Criteria for Scattering Dark States in Nanostructured Particles

    Get PDF
    Nanostructures with multiple resonances can exhibit a suppressed or even completely eliminated scattering of light, called a scattering dark state. We describe this phenomenon with a general treatment of light scattering from a multiresonant nanostructure that is spherical or nonspherical but subwavelength in size. With multiple resonances in the same channel (i.e., same angular momentum and polarization), coherent interference always leads to scattering dark states in the low-absorption limit, regardless of the system details. The coupling between resonances is inevitable and can be interpreted as arising from far-field or near-field. This is a realization of coupled-resonator-induced transparency in the context of light scattering, which is related to but different from Fano resonances. Explicit examples are given to illustrate these concepts.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0819762

    Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium

    Get PDF
    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Effect of Ramping-Up Rate on Film Thickness for Spin-On Processing

    No full text
    Spin-on processing is used in many industries to deposit very thin coatings on flat substrates, including silicon wafers, flat-panel displays, and precision optical components. A liquid precursor solution is first dispensed onto the surface of the substrate; this fluid then spreads out very evenly over the surface due to large rotational forces caused by spinning of the substrate. When looking for an optimum coating procedure process engineers can adjust many variables including the peak spin speed, the ramping rate to reach that speed, the spinning time, as well as allowing for dynamic solution dispense before ramping up, though most protocols focus on the peak spin speed as the primary controlling variable. Engineers often construct spin-speed versus thickness correlations that enable predictable adjustment of spin-speed to achieve a desired thickness. Yet, rather little attention has been paid to the importance of the acceleration rate used to reach the desired peak speed. We show here that ramping rate is also important in helping establish the final coating thickness. We present a numerical model of the fluid flow on a spinning wafer when the spin-speed is ramping linearly up to a desired peak speed and then held constant. It is shown that the coating may “set” into its final thickness before the spin-speed reaches its peak value. In these cases then the peak spin-speed parameter is no longer the primary variable that defines the final coating thickness. This also impacts the interpretation of critical exponents found when fitting spin-speed vs. thickness data. We perform parallel experimental measurements for different ramping-up times and confirm the results from the numerical model. Both experimental and theoretical results support use of the simplified model put forth by Meyerhofer over 25 years ago (J. Appl. Phys. 49 (1978) 3993-3997).This is the Author's accepted manuscript of an article published in Journal of Materials Science: Materials in Electronics. The final publication is available at Springer via http://dx.doi.org/10.1007/s10854-005-4973-6Peer reviewe

    Accelerometer-Measured Physical Activity and Sedentary Time among Children in Japan before and during COVID-19: A Cross-Sectional and Longitudinal Analysis

    No full text
    This study examined changes in physical activity (PA), sedentary behavior (SB), screen time, sleep, and executive function among Japanese preschoolers between COVID-19 pre-pandemic and pandemic periods, using cross-sectional and longitudinal data. Accelerometer data from 63 children aged 5–6 years were collected from three kindergartens in Tokyo, Japan, in late 2019 (pre-COVID-19). This was compared to the data of 49 children aged 5–6 years from the same kindergartens, collected in late 2020 (during COVID-19). Sixteen children in the pre-COVID-19 cohort also participated in the 2020 survey and provided data for the longitudinal analysis. The mean minutes of PA, SB, screen time, and sleep duration, as well as executive function, were compared between the pre- and during COVID-19 cohorts. After adjusting for school, sex, and accelerometer wear time, there were no significant differences in any of the measured outcomes between the two cohorts. However, the analysis of longitudinal data revealed significant increases in time spent in SB and on screens, and a decrease in light-intensity PA and sleep duration during the pandemic compared to the pre-pandemic period. Results suggest that, despite the COVID-19 pandemic, young children’s activity levels and SB did not significantly differ from pre-pandemic levels. However, school-aged children’s SB, light PA, and sleep time were affected, although this cannot be disentangled from the effects of the transition to school

    Accelerometer-Measured Physical Activity and Sedentary Time among Children in Japan before and during COVID-19: A Cross-Sectional and Longitudinal Analysis

    No full text
    This study examined changes in physical activity (PA), sedentary behavior (SB), screen time, sleep, and executive function among Japanese preschoolers between COVID-19 pre-pandemic and pandemic periods, using cross-sectional and longitudinal data. Accelerometer data from 63 children aged 5–6 years were collected from three kindergartens in Tokyo, Japan, in late 2019 (pre-COVID-19). This was compared to the data of 49 children aged 5–6 years from the same kindergartens, collected in late 2020 (during COVID-19). Sixteen children in the pre-COVID-19 cohort also participated in the 2020 survey and provided data for the longitudinal analysis. The mean minutes of PA, SB, screen time, and sleep duration, as well as executive function, were compared between the pre- and during COVID-19 cohorts. After adjusting for school, sex, and accelerometer wear time, there were no significant differences in any of the measured outcomes between the two cohorts. However, the analysis of longitudinal data revealed significant increases in time spent in SB and on screens, and a decrease in light-intensity PA and sleep duration during the pandemic compared to the pre-pandemic period. Results suggest that, despite the COVID-19 pandemic, young children’s activity levels and SB did not significantly differ from pre-pandemic levels. However, school-aged children’s SB, light PA, and sleep time were affected, although this cannot be disentangled from the effects of the transition to school
    corecore