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PURPOSE. To test the hypothesis that specific locations and
patterns of threshold findings within the visual field have
predictive value for progressive glaucomatous optic neuropa-
thy (pGON).

METHODS. Age-adjusted standard automated perimetry thresh-
olds, along with other clinical variables gathered at the initial
examination of 168 individuals with high-risk ocular hyperten-
sion or early glaucoma, were used as predictors in a classifica-
tion tree model. The classification variable was a determination
of pGON, based on longitudinally gathered stereo optic nerve
head photographs. Only data for the worse eye of each indi-
vidual were included. Data from 100 normal subjects were
used to test the specificity of the models.

RESULTS. Classification tree models suggest that patterns of
baseline visual field findings are predictive of pGON with
sensitivity 65% and specificity 87% on average. Average speci-
ficity when data from normal subjects were run on the models
was 69%.

CONCLUSIONS. Classification trees can be used to determine
which visual field locations are most predictive of poorer
prognosis for pGON. Spatial patterns within the visual field
convey useable predictive information, in most cases when
thresholds are still well within the classically defined normal
range. (Invest Ophthalmol Vis Sci. 2009;50:674–680) DOI:
10.1167/iovs.08-1767

Baseline results from standard automated perimetry (SAP)
have been used to quantify the risk of conversion to glau-

coma in individuals with ocular hypertension (OH) and the risk
of progression in patients with early glaucoma (EG).1,2 In
previous investigations of this predictive capacity, visual field
data in terms of global indices were used, such as mean devi-
ation (MD), pattern or corrected pattern SD (PSD/CPSD) or the
glaucoma hemifield test (GHT).3 Other studies have used scor-
ing systems that also condense visual field data into a single
value, such as the AGIS (Advanced Glaucoma Intervention

Study) and CIGTS (Collaborative Initial Glaucoma Treatment
Study).4–6

This report describes the application of a statistical machine
learning technique, called classification and regression tree
(CART) analysis,7 to a longitudinal dataset collected from pa-
tients with high-risk OH or EG. The principal goal was to use
data from a baseline SAP examination, together with common
clinical and demographic variables, to predict which patients
would go on to exhibit progressive glaucomatous optic neu-
ropathy (pGON). In addition, we addressed the hypothesis that
certain locations and patterns of threshold findings within the
visual field convey greater predictive information for pGON
than do other locations. We used all visual field test locations
individually and avoided using indices that condense the data
contained in a visual field to a single number.

Breiman et al.7 first described CART as a flexible, nonpara-
metric, data-mining tool that, unlike traditional statistical mod-
els, makes few assumptions about the distribution of the un-
derlying data. For example, it deals well with independent
variables of mixed type that are correlated, high-dimensional,
and inhomogeneous. CART analysis produces decision rules
arranged in a tree structure that are relatively simple to inter-
pret for nonstatisticians. CART also performs well with some
missing data by exploiting correlation between independent
variables, so long as the data are missing at random.

CART relies on recursive binary partitioning of a dataset
based on several independent variables, or inputs, as they are
called in machine learning. During the process, the dataset is
successively split into smaller and smaller subsets. The purpose
is to produce a set of decision rules applied to the inputs that
can divide the data with respect to the classification variable
(i.e., separate those who display pGON from those who do
not). If the inputs contain data that were collected at an earlier
time point than the classification variable, then a truly predic-
tive model is produced. In an early example of this technique
in the literature, vital signs and laboratory results at hospital
admittance were used to predict the mortality risk of patients
with acutely decompensated heart failure.8 Forms of CART
analysis have already been applied to ocular findings, including
data from patients with glaucoma. For example, CART has
been applied to results from confocal scanning laser ophthal-
moscopy to assist in classifying patients as normal or glauco-
matous.9–13

Conceptually, the process can be thought of as growing a
tree where the trunk (entire cohort) is repeatedly split into two
branches. Each new case (eye) follows a path along the deci-
sion tree, with the direction taken at each branch determined
by questions applied to the inputs. An optimal set of inputs,
with appropriate cutoffs applied to them, is selected to mini-
mize the number of misclassified cases. The operator has the
option of weighting the importance of different misclassifica-
tion events, for example placing more importance on misclas-
sifying progressing cases versus misclassifying nonprogressing
cases, which has the effect of pushing the decision tree toward
higher sensitivity or higher specificity.
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The purpose of the present study is to test the hypothesis
that specific locations and patterns of threshold findings within
the visual field have predictive value for progressive glaucoma-
tous optic neuropathy pGON. This approach may allow useful
information to be extracted that is normally ignored.

METHODS

The protocols and procedures used in this study complied with the
tenets of the Declaration of Helsinki. All protocols were approved by
the Legacy Health System Institutional Review Board. All subjects
confirmed their willingness to participate in this longitudinal study
after the risks and benefits of participation were explained.

Subjects with High-Risk OH or EG

Data from both eyes of 168 individuals with high-risk OH or EG were
available for this analysis. Most participants were recruited from the
Devers Eye Institute glaucoma clinic, whereas community eye care
providers referred the remainder to the study. Inclusion criteria for the
study are described elsewhere.14 Briefly, they include (1) a previous
diagnosis of glaucomatous optic neuropathy (GON) or suspicious optic
nerve head (ONH) appearance (vertical cup-to-disc ratio � 0.6, cup-
to-disc ratio asymmetry between eyes � 0.2 with no disc size asym-
metry, potential neuroretinal rim notching and narrowing, and disc
hemorrhage), and/or (2) OH defined as untreated intraocular pressure
(IOP) � 22 mm Hg with at least one additional risk factor (family
history of glaucoma, history of migraine or Raynaud’s syndrome, Afri-
can-American race, age � 70 years, history of systemic hypertension,
or diet-controlled diabetes). Exclusion criteria consisted of any other
serious ocular disease, previous ocular surgery (except uncomplicated
cataract surgery), visual acuity � 20/40 in either eye, spectacle refrac-
tion � �5.00 D sphere and � �2.00 D cylinder, any media opacity
greater than mild age-related lens changes, diabetes requiring medica-
tion, or full-threshold 24-2 SAP MD worse than �6 dB before recruit-
ment. Other than ensuring subjects had no worse than mild perimetric
defects, visual fields played no other part in study recruitment. All
subjects had performed several automated visual field examinations
before this study’s baseline examination, so learning effects should
have been minimal. Only subjects with reliable visual field results (false
positives and negatives � 0.33) were included in the analysis.

Yearly visits were scheduled at which participants were examined
with SAP (HFA II; Carl Zeiss Meditec, Dublin, CA), tonometry (Gold-
mann applanation) and simultaneous stereo nerve head photography
(3-Dx; Nidek Co., Ltd., Gamagori, Japan) after maximum pupil dilation.
Central corneal thickness (CCT) was measured once during the fol-
low-up period using an ultrasonic pachymeter (DGH Technology,
Exton, PA), but this was not at the baseline visit for most subjects. Only
baseline findings, along with the single measure of CCT, were used as
CART inputs, but the maximum follow up interval was used to estab-
lish pGON for each individual. Subjects were being treated at the
discretion of their managing eye care specialists who were sent a copy
of study-related test results yearly. Findings from the OH/EG subjects
are given in Table 1.

We attempted to quantify the OH/EG cohort by estimating the
number of participants that could be considered to have glaucoma
using the following set of criteria. (1) A subject is considered to have
glaucoma if either eye is considered glaucomatous. (2) An eye is
considered glaucomatous if either the ONH is glaucomatous or the
visual field is glaucomatous. (3) The ONH is considered glaucomatous
if pGON is observed (as also used by e.g., Medeiros et al.15) or if the
ONH is considered GON at both baseline and follow-up, regardless of
whether progression has taken place. (4) A visual field is considered
glaucomatous if the GHT is outside normal limits (ONL), the PSD is
abnormal at the P � 0.05 level, or a cluster of at least three abnormal
locations exist (P � 0.05) that is confined to a hemifield and contains
at least one location at the P � 0.01 level (i.e., a Hodapp-Parish-
Anderson mild defect16). According to this classification scheme, 88%

of subjects were considered to have glaucoma (Table 1). It should be
noted that of all the variables listed in Table 1, only age, IOP, and CCT
were used to generate the tree models.

Normal Subjects

Data from both eyes of 100 normal subjects were available to test the
specificity of the CART models. These subjects were employees of
Legacy Health System, their families, and the friends and spouses of the
OH/EG subjects. Normal subjects were required to be within normal
limits in all findings of a comprehensive eye examination that included
visual acuity (�20/40), slit lamp biomicroscopy, IOP (�21 mm Hg),
and dilated fundus examination. When the eye examination result
suggested that subjects had normal eyes, they were included unless
their visual field result was unreliable or suggestive of disease. Conse-
quently, a small number of normal eyes had visual field results that
were outside classically defined normal limits (i.e., P � 0.05 on PSD) as
shown in Table 1. Apart from CCT, all information that was available
from the baseline examination of the OH/EG subjects was also avail-
able for the normal subjects.

Determination of pGON

Either the baseline nerve head photograph or the most recent fol-
low-up photograph was randomly labeled slide A; the other photo-
graph was labeled slide B. Masked to all other subject information, two
fellowship-trained glaucoma specialists (HN and RT) independently
graded each stereo pair (Stereo Viewer II; Asahi-Pentax, Tokyo, Japan)
as either normal or GON, based on the following characteristics:
adequate clarity and stereopsis, neuroretinal rim thinning (generalized
or localized), excavation, retinal nerve fiber layer defect, violation of
the normal pattern of rim thickness (also known as the ISNT rule),17

and cup-to-disc ratio by contour.18 The graders then determined
whether there had been any change between the two photographs,
and if so, which photograph was worse. Graders based their determi-
nation of change on decreasing rim thickness (if �2 clock hours), new
neuroretinal rim notch (if �1 clock hour), increased excavation (un-
dermining of the disc margin), and new or enlarged nerve fiber layer
defect(s). Changes in rim color, presence of a new disc hemorrhage or
progressive peripapillary atrophy were not sufficient for a determina-
tion of change to be made. Furthermore, pGON was deemed to have
occurred only if the photograph that was called worse was from the
follow-up visit. Initial agreement between the two primary graders was

TABLE 1. Findings for the OH/EG and Normal Subjects

Variable OH/EG Normals

Sex, female/male 96/72 63/37
Age, y (mean � SD) 58.2 � 11.1 48.8 � 13.6
IOP, mm Hg (mean � SD)* 19.7 � 3.9 14.6 � 2.7
CCT, �m (mean � SD)† 557 � 38 NA
MD, dB (mean � SD) �0.18 � 2.3 �0.85 � 1.1
PSD, dB (mean � SD) 2.51 � 1.7 1.55 � 0.4
PSD ONL, (% eyes) 16.7 0.5
GHT ONL, (% eyes) 27.4 2.5
Cluster, (% eyes)‡ 23.5 1.0
VF ONL, (% eyes) 34.8 3.0
bGON, (% eyes) 57.1 0.0
pGON, (% eyes) 27.7 NA
Glaucoma, (% subjects) 87.5 6.0

ONL, outside normal limits; bGON, baseline glaucomatous optic
neuropathy; pGON, progressive glaucomatous optic neuropathy.

* Measurement missing for both eyes of three OH/EG individuals
and three normals.

† Measure missing for both eyes of 20 OH/EG individuals and for
all normals.

‡ Clusters were confined to a single hemifield and consisted of at
least three locations at or below P � 0.05, one of which was at or
below P � 0.01 level.
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71%, which is comparable to published agreement rates.15,19 Disagree-
ments were initially addressed by asking graders to reach a consensus.
If a consensus could not be reached, then one additional masked
grader (GAC or SLM) made a final adjudication. The mean interval
between baseline and most recent follow-up ONH photograph was
5.5 � 1.7 (SD) years (range, 2.0–7.9) with a median of 6.1 years.

During the follow-up period, pGON was observed in 67 individuals.
For 41 individuals, pGON was observed in one eye, whereas for 26
individuals, pGON was observed in both eyes (see Table 1). It is worth
noting that longitudinal follow-up was not performed for the normal
subjects, and pGON was assumed to be zero for these individuals, but
it was not assessed.

Age Correction of Visual Field Data

We used thresholds from individual visual field locations, along with
other clinical variables, to predict pGON. Consequently, it was neces-
sary to correct for the normal decline of perimetry thresholds with age.
Initially, all visual fields from left eyes were made right eye equivalent
by reflecting about the vertical midline. Slope parameters from linear
regressions of threshold on age for a group of 348 normal subjects for
all 24-2 visual field locations were obtained from the investigators in a
previous study.20 None of the 100 normal subjects used in the present
study were part of the group of 348 used to generate the age-correc-
tion parameters.

The mean age-related rate of decline for the 53 nonblindspot
locations was �0.06 dB/year. These regression slopes were used to
adjust all SAP data in the present study to 48.5 years, as that was the
mean age of the 348 normal subjects. If age adjustment resulted in a
threshold that was less than 0 dB, then the age adjusted threshold was
set to 0 dB. The net effect of age adjustment was to generate the best
estimate of SAP thresholds, if all participants had been 48.5 years of
age, and to effectively remove the influence of age on SAP thresholds.
This allowed us to use age in the tree models as an independent
predictor of pGON.

We could have used total deviation (TD) values instead of age-
adjusted thresholds in this analysis, with similar results. Calculating
age-adjusted thresholds was simpler for us, as we are able to digitally
extract threshold data from saved Humphrey visual fields. To use TD
values would have required hand entry of data from 536 visual fields
(two eyes each for 168 OH/EG and 100 normal subjects), which would
have been inefficient and error prone. In addition, TD values are
integers, whereas our age-adjusted thresholds maintain high precision.

Building CART Models

All analyses were performed in the R language and environment for
statistical computing,21 in combination with the package rpart,22

which was used for CART analyses. Package randomForest23 was used
to compute the importance of the inputs. In the present analysis, the
classification variable was pGON, which was predicted using the
inputs listed in Table 2.

In CART analyses, it is customary to initially allow tree growth to
continue until it cannot continue any further. It is likely that such an
exhaustively grown tree will perform poorly when applied to an
independent dataset, because idiosyncrasies and noise in the data are
being incorporated into the model (over fitting). It is therefore neces-
sary to prune the large initial tree and produce a family of smaller trees
in an attempt to capture only robust effects. It is possible for the user

to limit initial tree growth by handicapping large complex trees in
favor of smaller, simpler ones under the assumption that much of the
large tree will have to be pruned later. A common method of selecting
the optimum tree from the family of pruned trees is to perform 10-fold
cross-validation (CV),7 which was used in this analysis. During 10-fold
CV, the dataset is randomly divided into 10 equal-sized partitions. Each
partition is held aside, while a tree is grown with the other 90% of the
data. The held-aside cases are then used to validate the performance of
the trees constructed. For those familiar with CART, the control pa-
rameters used in tree construction are shown in Appendix 1, online at
http://www.iovs.org/cgi/content/full/50/2/674/DC1.

Unlike some other statistical methods,24,25 the available implemen-
tations of CART cannot account for the correlated nature of data from
the two eyes of an individual,26 and only data from one eye per subject
can be used in construction of a tree model. Consequently, analysis
was performed on the worse eye of each subject. For OH/EG partici-
pants who only had one eye exhibit pGON (41/168), the progressing
eye was considered the worse eye. For OH/EG participants who had
both eyes (26/168) or neither eye (101/168) exhibit pGON (127/168
total), one eye was randomly chosen to be the worse eye. Using the
worse eye allowed us to maximize the number of pGON cases available
for tree construction. In an effort to explore the effect of this selection
process the random choice of worse eye was repeated 10 times, and a
tree model was generated for each of the 10 samples.

Testing Specificity of CART Models

One eye was randomly chosen for each of the normal subjects, and this
selection process was repeated 10 times. Each one of the 10 tree
models was tested using a different random eye selection from the
normal subjects. The decision rules generated from the OH/EG sub-
jects were applied to the data from the normal subjects and a predic-
tion (stable or pGON) was made.

RESULTS

A classification tree generated from one of the 10 worse-eye
selection samples is shown in Figure 1. This tree is displayed
because its performance was near average for all 10 trees. The
nine additional trees from the other worse eye selection sam-
ples are shown in Appendix 2, online at http://www.iovs.org/
cgi/content/full/50/2/674/DC1. The decision tree is entered at
the top, and the first question is evaluated to produce a yes or no
answer. If the question evaluates to yes (true), the left branch is
followed; otherwise, the right branch is followed. Successive
questions are evaluated for each case until it arrives at one of the
terminal regions (called nodes) where no further splitting takes
place. In the figure, terminal nodes are accompanied by the
number of stable and pGON eyes that were assigned to that node.
The label that appears first (stable or pGON) determines the
classification given to all cases within that node. Visual field test
locations are designated as TP#, where # is an identification
number. To place the split values in perspective, the normal
percentile associated with the age-adjusted threshold values
shown in the tree are displayed in parentheses to the right of
each decision rule. Figure 2 shows the test locations identified
within the Humphrey 24-2 pattern for a right eye.

Figure 1 suggests that an eye with a baseline age-adjusted
SAP threshold of 29 dB at test point 45 (TP45) would result in
the first question evaluating to yes (29 is greater than 28.8) and
the case would follow the left branch to arrive at a terminal
node. Forty-four eyes ended up in this terminal node within
which all eyes were predicted to have a stable ONH appear-
ance. Eight of the 44 (18%) eyes exhibited pGON and were
therefore misclassified as stable. We can compare this terminal
node to the lower rightmost terminal node. To arrive in the
lower rightmost node, an eye was required to have baseline
age-adjusted SAP thresholds that met all the following criteria:

TABLE 2. Inputs Used during Tree Construction to Predict pGON

Visual Field Clinical Demographic

53 Nonblindspot test
point thresholds
(age-adjusted dB)

Baseline IOP (mm Hg) Sex (male or female)
CCT (�m) Age at baseline (y)

Units/factor levels are given in parentheses. Columns show type
of predictor.
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TP45 � 28.8 dB, TP8 � 28.3 dB, TP28 � 34.5 dB, and TP42 �
33.1 dB. Forty-eight eyes met these criteria and were predicted
to exhibit pGON. Thirty-seven (77%) of these eyes exhibited
pGON and were correctly classified. However, 11 eyes were
misclassified, as they had stable ONH appearance.

The rate of pGON in our dataset was 40% (67/168 eyes for
each of the 10 worse-eye random samples). Figure 1 demon-
strates that this CART model was able to split the cohort into
those at high risk for pGON and those at low risk for pGON, by
using only the age-adjusted baseline SAP thresholds at six
locations. This ability can be observed by examining the lower
right most terminal node where the predicted rate of pGON is
1.9 times the average rate and comparing that to the upper
leftmost terminal node where the predicted rate of pGON is

0.46 times the average rate. This result represents a 4.2 times
difference in the predicted rate of pGON.

Visual field locations within Figure 2, along with IOP, CCT,
and baseline age, have been shaded according to the ranked
variable importance generated from randomForest using the 10
random samples of worse eye. The variable with the greatest
importance is black (TP44), and shading has been made pro-
gressively lighter (equal gray steps) with decreasing rank of
variable importance, with the least important variable (TP13)
being white.

In an attempt to quantify the ability of the 10 trees to
separate stable from pGON eyes, we calculated the discrim-
inability index (d�), borrowed from signal-detection theory.27

The discriminability index is based on the true- and false-
positive rates. The average d� for the 10 trees was 1.64 (95%
confidence interval [CI] 1.45–1.83; range 1.08–1.97), and this
value was used to plot the solid curve in Figure 3.

The short-dash curves on either side of the solid curve
represent the 95% CI of the average d� value. A decision
process, in this case trying to predict whether an eye will
exhibit pGON or not, is often defined as being at its threshold
if d� � 1. A line that depicts d� � 1 (dash-dot curve) is shown
in Figure 3 along with the chance-performance line (long-dash
curve), which corresponds to d� � 0.

We also examined the ability of the baseline summary indi-
ces MD, PSD, and GHT (borderline grouped with ONL) and
baseline GON (bGON) to predict pGON using univariate logis-
tic regression. Data from both eyes of each participant were
used with results adjusted for the correlated nature of findings
from the two eyes (generalized estimating equations [GEE]
with logit link). Neither baseline MD nor PSD was significantly
related to pGON (P � 0.05 in both cases), suggesting that
predictive information for pGON is lost when summary indices
that are based on all visual field locations are calculated. Base-
line GHT was significantly related to pGON (GEE: Wald � 7.4,
P � 0.006) with greater risk for pGON if baseline GHT was
borderline or ONL. Having bGON was also highly predictive of
pGON (GEE: Wald � 19.7, P � 0.0001).

FIGURE 2. Most important locations arranged as a 24-2 test pattern for
a right eye with baseline IOP, CCT, and baseline age included (left).
The darker the gray shading used to display a test location or variable
the more important it is in the tree models.

FIGURE 3. Sensitivity (true-positive rate) plotted against 1 � specific-
ity (false-positive rate) for the 10 trees generated (symbols). Gray
circle: tree shown in Figure 1. Also plotted are the average discrim-
inability index (d�, solid line), the 95% CI (short-dash line), the d� �
one line (dash-dot line) and the d� � 0 line (long-dash line).

FIGURE 1. The decision tree closest to average performance for all 10
trees generated. Normal percentiles associated with split value are
shown in parentheses next to the decision rule. Decisions shown in
bold italic identify split values that are at or below the normal lower
5th percentile. TP stands for test point, the locations of which are
shown in Figure 2.
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If MD, PSD, GHT, and bGON were added to the individual
test point thresholds and used as inputs for the tree models,
MD and GHT were near bottom in ranked variable importance,
PSD was ranked 16th of 62 and bGON was ranked 1st. How-
ever, in terms of sensitivity, specificity, and overall misclassifi-
cation rate, performance was essentially unchanged when
these inputs were included. The ranked importance of visual
field locations also changed only minimally going from models
that excluded to models that included MD, PSD, GHT, and
bGON. The correlation between the ranked importances of
test location from the two sets of models was 0.93.

When applied to the data from the 100 normal subjects, the
average specificity of the 10 tree models was 69%. Thirty-one
percent of eyes, on average, were predicted to exhibit pGON.

DISCUSSION

Classification tree models are data-mining tools that enhance
depiction of interactions between variables, especially when
complex or unexpected. Complex interactions may be difficult
or impossible to tease apart using more traditional statistical
techniques.7 CART allows the structure within the data to drive
the model determined, rather than requiring a model be for-
malized in advance and then tested against the data. Safe-
guards, such as 10-fold CV, protect against idiosyncrasies in the
learning dataset being incorporated into the model and at-
tempt to forecast performance in an independent dataset.
What this study shows is that baseline SAP fields contain
information that can be used to predict pGON and that certain
visual field locations tend to be more important for this task
than other locations, at least in this cohort of subjects with OH
or EG.

It can be observed that only one of the split values in Figure
1 is below the normal lower 5th percentile level which is
traditionally used to define statistical significance. It is also
worth pointing out that an eye could reach the lower right
terminal node in Figure 1, which contains eyes at high risk for
pGON, without a single test location having P � 0.05 on a
traditional TD probability plot. In all 10 trees combined, there
were a total of 55 splits made, with only 9 (16%) of these based
on an age-adjusted threshold value that is abnormal at the P �
0.05 level.

In 7 of the 10 tree models generated (Fig. 1 and Appendix
2, http://www.iovs.org/cgi/content/full/50/2/674/DC1), the
initial decision was based on test point 44 with the criterion
value being near the 75th normal percentile. For the remaining
trees, the initial split was based on test point 29, 41, or 45. Of
note, all four of these test locations (TP29, TP41, TP44, and
TP45) lie along the inferior horizontal meridian, with three of
them in the nasal step area.

If the ranked importance of test points is evenly divided into
low, medium, and high ranges, the inferior visual field appears
to have greater importance. Eleven (42%) of 26 locations in the
inferior field have high importance with only 4 (15%) of 26
having low importance. By contrast, 6 (22%) of 27 locations in
the superior field have high importance with 14 (52%) of 27
having low importance.

Henson and Chauhan28 report that visual field locations in
the superior arcuate region and in the inferior nasal quadrant
provide the maximum amount of information for diagnosis of
glaucoma. They also find that the extreme superior periphery
carries little diagnostic information. These statements are in
general agreement with Figure 2, in that the inferior nasal
quadrant contains many high-importance locations, high-im-
portance locations in the superior field are almost exclusively
in the arcuate region and the extreme superior periphery is
devoid of high-importance locations. Our findings differ on the

importance of the inferior temporal quadrant and the area
adjacent to the physiological blind spot, as Henson and Chau-
han suggest that these areas provide the least amount of infor-
mation, whereas we find that the inferior temporal quadrant
contains quite a number of high-importance locations. Only
two of eight locations bordering the blind spot have low
importance in our analysis.

Heijl and Lundqvist29 examined eyes from OH with or
without established glaucoma in the fellow eye. They identi-
fied defective locations evident in the first glaucomatous field
after repeatedly normal fields. The most common defective
locations, especially those with absolute defects, were predom-
inantly in the superior field and near the physiological blind
spot, in contrast to the present study, in which the inferior
visual field appeared most important but agrees that the area
near the blind spot may be important.

It should be remembered that in the present study the
importance of visual field locations pertains to prediction of
pGON and not making a diagnosis of glaucoma. In that regard,
the question being asked is different in this study compared
with both studies.28,29 Different visual field locations may be
most important for diagnosis of glaucoma and for predicting
pGON.

It is also critical to recognize that being an important visual
field location in this analysis is not equivalent to suggesting that
threshold must be depressed at that location. One must resist
the temptation to interpret the importance map in the same
way that one interprets a visual field printout. High importance
suggests only that a location provides information for predict-
ing pGON. Some important locations may be acting as anchors
for normalcy, and it is only in combination with a low thresh-
old at another location that predictive information is manifest.
For that reason, interpreting important locations in terms of
anatomy and physiology of the ganglion cells and RNFL may be
questionable.

Making 10 random samples of worse eye allowed us to
estimate the influence of the worse eye selection process.
Examination of Figure 3 shows that some of the decision trees
had high sensitivity but generally at the cost of poorer speci-
ficity and vice versa. It appears that the 10 tree models reflect
the same underlying decision process as they show similar d�
values. The worse-eye selection process resulted in decision
trees that were slightly more sensitive or slightly more specific
but did not substantially affect their ability to discriminate
between eyes likely to have stable versus progressing ONH
appearance.

The location importance shown in Figure 2 suggests that it
may be possible to test fewer visual field locations while
monitoring glaucoma patients for progression. Testing at fewer
locations would reduce test duration and patient fatigue and
perhaps would improve reliability. Alternatively, with the same
test duration as current tests, it may be possible to measure
threshold twice at a reduced set of locations and average the
two determinations, reducing test–retest variability. Others
have examined the possibility of producing optimized sets of
test locations30–33 but the concept has not found traction in
visual field testing for glaucoma. In particular, Weber and
Diestelhorst34 have even examined the utility of reduced sets
of test points to detect visual field progression in glaucoma.
The purpose of the present study was to predict pGON, so the
reduced sets of test locations may be different for the two
purposes. We have not examined the usefulness of reduced
sets of test locations in this article, and the suggestion must
therefore be considered speculative.

This application of CART is limited in five aspects. First,
only one eye could be used per subject. We chose a worse eye
before performing the analyses. Choosing a worse eye instead
of randomly choosing an eye may have allowed a slightly
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greater chance of bias. Eye selection was essentially random,
however, for 227 of 268 subjects. Although it is not uncom-
mon in ophthalmic statistics to have to randomly select one
eye from each individual or use an average from both eyes, this
method sacrifices information. An allied point is that subjects
who had both eyes display pGON should perhaps have been
given greater weight in the tree models. Currently, we have no
data to suggest what this greater weighting should be and
weighted all cases equally. CART methods are under develop-
ment that can account for correlation between cases. These
methods may make eye choice and weighting moot topics.
Second, our classification variable was whether pGON was
observed between baseline and the most recent follow-up visit.
We have not determined time-to-pGON and therefore do not
have survival time information for the classification variable.
CART methods that take advantage of survival data have been
developed35 and information regarding time-to-pGON may
have improved performance of the tree models or altered
outcomes. Third, our determination of pGON was predicated
on one baseline and one follow-up stereo nerve head photo-
graph. Confirming progression with a second follow-up pho-
tograph would have been preferable and not seeking confir-
mation may have allowed a small number of false pGON
determinations to be made, affecting results. Fourth, the num-
ber of subjects used in this study (168 OH/EG and 100 normal
subjects) is limited, and validation in a larger, independent
cohort is needed before these findings can be considered
generalizable. Finally, even though the age-correction process
used location specific rates of change, this change was as-
sumed to be linear. Other studies suggest the relationship
between age and perimetric sensitivity,36 or age and test–retest
variability,37 may be nonlinear (but see also Ref. 38). If this
relationship is nonlinear then our age-adjusted data would be
underadjusted for older individuals and this may have impacted
results.

We have attempted to validate the specificity of our deci-
sion trees by applying them to data collected from 100 normal
subjects. However, this is not really a fair comparison dataset
for validating the specificity of the decision trees as they have
been trained to predict which OH/EG subjects will display
pGON and which will display stable ONH appearance. The
ideal dataset for validating the tree models would come from
OH/EG subjects that have displayed longitudinally stable ONH
appearance. The average finding of 69% specificity when the
data from normal subjects was run through the tree models is
a little troubling, though. We had expected the decision trees
to have better specificity when data from normal subjects was
used, but it is difficult to know exactly what features in the data
are being exploited by the tree models to allow prediction of
pGON. The lower than expected specificity of the tree models
when data from normal subjects was used is a further argument
for validation of these tree models in larger, independent data-
sets before they can be considered generalizable.

In summary, the current analyses used decision trees to
allow prediction of pGON from baseline SAP examination
coupled with CCT, baseline IOP and baseline age. The decision
tree with average performance in this study had sensitivity and
specificity of 65% and 87%, respectively. When visual field
locations are ranked in terms of importance for predicting
pGON, the inferior visual field seems more important for this
task, particularly along the nasal horizontal meridian. Subtle
visual field features—for example, being in the normal lower
quartile at certain visual field locations while being in the
normal upper quartile at other locations—conveyed informa-
tion that was useful for predicting which eyes would exhibit
pGON. In only a few instances did the decision process rely on
a threshold value that would be considered abnormal in a more
traditional statistical sense (i.e., P � 0.05). Using information

regarding the exact percentile associated with threshold values
and not just whether they are below the normal lower 5th
percentile, may assist in assessing the functional status of
glaucoma patients and their risk for progressive change at the
ONH.
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