91 research outputs found

    Antarctic Thermocline Dynamics along a Narrow Shelf with Easterly Winds

    Get PDF
    Determining the role of Southern Ocean warm intermediate water for driving melting of the Antarctic ice sheet is a major challenge in assessing future sea level rise. Analysis of 2859 CTD profiles obtained between 1977 and 2016 by ships and instrumented seals at the Weddell Sea continental slope reveals a seasonal rise of the Antarctic Slope Front thermocline by more than 100 m during the summer. The signal at Kapp Norvegia (17°W) corresponds with a seasonal warming downstream at the Filchner Trough (40°W), indicating that a coherent evolution of the slope front along the shelf break regulates the onshore flow of warm deep water. Climatological cross sections of the slope front hydrography show that downwelling of Antarctic Surface Water forms a secondary front above the warm deep water interface during summer. Enhanced baroclinic growth rates at this front suggest that the wind-driven suppression of the thermocline is partially compensated by a shallower eddy overturning cell when surface water is present. A simple model of the Weddell Gyre boundary current reveals that wintertime densification of surface waters is crucial for maintaining the deep thermocline along the eastern Weddell Sea coast. The sensitivity of the warm inflow to the cross-frontal density gradient implies a positive feedback with ice shelf melting that may lead to an abrupt transition into a high melting state once warm water rises over the shelf break depth. Despite its regional focus, this study highlights the role of upper ocean buoyancy fluxes for controlling the thermocline depth along seasonally ice-covered narrow shelf regions with cyclonic along-slope winds

    Trans-polar drift-pathways of riverine European microplastic

    Get PDF
    High concentrations of microplastic particles are reported across the Arctic Ocean–yet no meaningful point sources, suspension timelines, or accumulation areas have been identified. Here we use Lagrangian particle advection simulations to model the transport of buoyant microplastic from northern European rivers to the high Arctic, and compare model results to the flux of sampled synthetic particles across the main entrance to the Arctic Ocean. We report widespread dispersal along the Eurasian continental shelf, across the North Pole, and back into the Nordic Seas; with accumulation zones over the Nansen basin, the Laptev Sea, and the ocean gyres of the Nordic Seas. The equal distribution of sampled synthetic particles across water masses covering a wide time frame of anthropogenic influence suggests a system in full saturation rather than pronounced injection from European sources, through a complex circulation scheme connecting the entire Arctic Mediterranean. This circulation of microplastic through Arctic ecosystems may have large consequences to natural ecosystem health, highlighting an ever-increasing need for better waste management

    Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet-ocean model using FISOC (v1.1) - ROMSIceShelf (v1.0) - Elmer/Ice (v9.0)

    Get PDF
    Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∌0.7 m yr−1 and approximate period of ∌6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models

    Properties and dynamics of mesoscale eddies in Fram Strait from a comparison between two high-resolution ocean-sea ice models

    Get PDF
    Fram Strait, the deepest gateway to the Arctic Ocean, is strongly influenced by eddy dynamics. Here we analyse the output from two eddy-resolving models (ROMS – Regional Ocean Modeling System; FESOM – Finite-Element Sea-ice Ocean Model) with around 1 km mesh resolution in Fram Strait, with a focus on their representation of eddy properties and dynamics. A comparison with mooring observations shows that both models reasonably simulate hydrography and eddy kinetic energy. Despite differences in model formulation, they show relatively similar eddy properties. The eddies have a mean radius of 4.9 and 5.6 km in ROMS and FESOM, respectively, with slightly more cyclones (ROMS: 54 %, FESOM: 55 %) than anticyclones. The mean lifetime of detected eddies is relatively short in both simulations (ROMS: 10 d, FESOM: 11 d), and the mean travel distance is 35 km in both models. More anticyclones are trapped in deep depressions or move toward deep locations. The two models show comparable spatial patterns of baroclinic and barotropic instability. ROMS has relatively stronger eddy intensity and baroclinic instability, possibly due to its smaller grid size, while FESOM has stronger eddy kinetic energy in the West Spitsbergen Current. Overall, the relatively good agreement between the two models strengthens our confidence in their ability to realistically represent the Fram Strait ocean dynamics and also highlights the need for very high mesh resolution

    The Fate of the Southern Weddell Sea Continental Shelf in a Warming Climate

    Get PDF
    Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet

    On the Modified Warm Deep Water flow toward the Filchner Ronne Ice Shelf: Observations and Model Results

    Get PDF
    The Filchner Ronne Ice Shelf (FRIS), located in the southern Weddell Sea, plays a key role in the dense water formation, which is a precursor of AABW in the world ocean. Today, the ice shelf is protected by a large cold continental shelf. Model studies, however, have suggested the potential for an increased flow of Modified Warm Deep Water (MWDW) toward and under FRIS via the Filchner Trough, causing a substantial increase in basal melt rates by the end of this century. Historic data in the region suffer from a strong summer bias. New two-year long mooring time series from 2014 to 2016 reveal a distinct seasonal cycle in hydrography along the eastern flank of the Filchner Trough, with a southward flow of MWDW only in summer, connected to a seasonal shoaling of the Antarctic Slope Front (ASF). With the goal of analysing the seasonal and interannual variability of this warm inflow, we set up a new global configuration for the Finite Element Sea-ice Ocean Model (FESOM) with increased resolution over the Weddell Sea and eddy-permitting resolution over the continental shelves. We find a strong sensitivity of the on-shelf flow of MWDW to the representation of the general Weddell Gyre circulation and in particular the ASF properties upstream of the Filchner Trough. Both improve significantly with the new high-resolution grid. In order to ensure a correct representation of the water masses encountering the Filchner Trough, which is necessary to study the inflow dynamics and variability, we perform an experiment with restoring the upstream temperature and salinity field over the continental slope. For this, a monthly climatology at17°W compiled from historic data was incorporated into the World Ocean Data Atlas

    Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice

    Get PDF
    Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m/yr, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.publishedVersio
    • 

    corecore