887 research outputs found

    Using Low-Fix Rate GPS Telemetry to Expand Estimates of Ungulate Reproductive Success

    Get PDF
    Background Population parameters such as reproductive success are critical for sustainably managing ungulate populations, however obtaining these data is often difficult, expensive, and invasive. Movement-based methods that leverage Global Positioning System (GPS) relocation data to identify parturition offer an alternative to more invasive techniques such as vaginal implant transmitters, but thus far have only been applied to relocation data with a relatively fine (one fix every  \u3c 8 h) temporal resolution. We employed a machine learning method to classify parturition/calf survival in cow elk in southeastern Kentucky, USA, using 13-h GPS relocation data and three simple movement metrics, training a random forest on cows that successfully reared their calf to a week old. Results We developed a decision rule based upon a predicted probability threshold across individual cow time series, accurately classifying 89.5% (51/57) of cows with a known reproductive status. When used to infer status of cows whose reproductive outcome was unknown, we classified 48.6% (21/38) as successful, compared to 85.1% (40/47) of known-status cows. Conclusions While our approach was limited primarily by fix acquisition success, we demonstrated that coarse collar fix rates did not limit inference if appropriate movement metrics are chosen. Movement-based methods for determining parturition in ungulates may allow wildlife managers to extract more vital rate information from GPS collars even if technology and related data quality are constrained by cost

    Suggestion of coherent radio reflections from an electron-beam induced particle cascade

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Testbeam experiment 576 at the SLAC National Accelerator Laboratory sought to make the first measurement of coherent radio reflections from the ionization produced in the wake of a high-energy particle shower. The > 10   GeV electron beam at the SLAC End Station A was directed into a large high-density polyethylene target to produce a shower analogous to that produced by an EeV neutrino interaction in ice. Continuous wave radio was transmitted into the target, and receiving antennas monitored for reflection of the transmitted signal from the ionization left in the wake of the shower. We detail the first run of the experiment and report on preliminary hints of a signal consistent with a radio reflection at a statistical significance of 2.36σ

    Toward High Energy Neutrino Detection with the Radar Echo Telescope for Cosmic Rays (RET-CR)

    Get PDF
    The Radar Echo Telescope for Cosmic Rays (RET-CR) is a pathfinder experiment for the Radar Echo Telescope for Neutrinos (RET-N), a next-generation in-ice detection experiment for ultra high energy neutrinos. RET-CR will serve as the testbed for the radar echo method to probe high-energy particle cascades in nature, whereby a transmitted radio signal is reflected from the ionization left in its wake. This method, recently validated at SLAC experiment T576, shows promising preliminary sensitivity to neutrino-induced cascades above the energy range of optical detectors like IceCube. RET-CR intends to use an in-nature test beam: the dense, in-ice cascade produced when the air shower of an ultra high energy cosmic ray impacts a high-elevation ice sheet. This in-ice cascade, orders of magnitude more dense than the in-air shower that preceded it, is similar in profile and density to the expected cascade from a neutrino-induced cascade deep in the ice. RET-CR will be triggered using surface scintillator technology and will be used to develop, test, and deploy the hardware, firmware, and software needed for the eventual RET-N. We present the strategy, status, and design sensitivity of RET-CR, and discuss its application to eventual neutrino detection

    The Radar Echo Telescope for Neutrinos (RET-N)

    Get PDF
    We present the Radar Echo Telescope for Neutrinos (RET-N). RET-N focuses on the detection of the cosmic neutrino flux above PeV energies by means of the radar detection technique. This method aims to bridge the energy gap between the diffuse neutrino flux detected by IceCube up to a few PeV and the sought for cosmogenic neutrinos at EeV energies by the in-ice Askaryan detectors, as well as the air-shower radio detectors. The radar echo method is based on the detection the ionization trail in the wake of a high-energy neutrino-induced particle cascade in ice. This technique, recently validated in a beam test (T576 at SLAC) is also the basis for the RET-N pathfinder experiment, RET-CR, which is currently under development. Based on the T-576 results, we show that the radar echo method leads to very promising sensitivities to detect cosmic neutrinos in the PeV-EeV region and above. We present the RET-N project and the results of our sensitivity studies

    Simulation and Optimisation for the Radar Echo Telescope for Cosmic Rays

    Get PDF
    The SLAC T-576 beam test experiment showed the feasibility of the radar detection technique to probe high-energy particle cascades in dense media. Corresponding particle-level simulations indicate that the radar method has very promising sensitivity to probe the > PeV cosmic neutrino flux. As such, it is crucial to demonstrate the in-situ feasibility of the radar echo method, which is the main goal of the current RET-CR experiment. Although the final goal of the Radar Echo Telescope is to detect cosmic neutrinos, we seek a proof of principle using cosmic-ray air showers penetrating the (high-altitude) Antarctic ice sheet. When an UHECR particle cascade propagates into a high-elevation ice sheet, it produces a dense in-ice cascade of charged particles which can reflect incoming radio waves. Using a surface cosmic-ray detector, the energy and direction of the UHECR can be reconstructed, and as such this constitutes a nearly ideal in-situ test beam to provide the proof of principle for the radar echo technique. RET-CR will consist of a transmitter array, receiver antennas and a surface scintillator plate array. Here we present the simulation efforts for RET-CR performed to optimise the surface array layout and triggering system, which affords an estimate of the expected event rate

    Investigating signal properties of UHE particles using in-ice radar for the RET experiment

    Get PDF
    The Radar Echo Telescope (RET) experiment plans to use the radar technique to detect Ultra-High Energy (UHE) cosmic rays and neutrinos in the polar ice sheets. Whenever an UHE particle collides with an ice molecule, it produces a shower of relativistic particles, which leaves behind an ionization trail. Radio waves can be reflected off this trail and be detected in antennas. It is critical to understand such a radar signal's key properties as that will allow us to do vertex, angular and energy reconstruction of the primary UHE particle. We will discuss various simulation methods, which will fundamentally rely on ray tracing, to recreate the radar signal and test our reconstruction methods

    Application of parabolic equation methods to in-ice radiowave propagation for ultra high energy neutrino detection experiments

    Get PDF
    Many ultra-high-energy neutrino-detection experiments seek radio wave signals from neutrino interactions deep within the polar ice, and an understanding of in-ice radio wave propagation is therefore of critical importance. The parabolic equation (PE) method for modeling the propagation of radio waves is a suitable intermediate between ray tracing and finite-difference time domain (FDTD) methods in terms of accuracy and computation time. The RET collaboration has developed the first modification of the PE method for use in modeling in-ice radio wave propagation for ultra high energy cosmic ray and neutrino detection experiments. In this proceeding we will detail the motivation for the development of this technique, the process by which it was modified for in-ice use, and showcase the accuracy of its results by comparing to FDTD and ray tracing

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process B→Kℓ+ℓ−B\to K\ell^+\ell^-, where ℓ+ℓ−\ell^+\ell^- is either an e+e−e^+e^- or μ+μ−\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)→BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+e−e^+e^- storage ring. Averaging over K(∗)K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(B→Kℓ+ℓ−)=(0.65−0.13+0.14±0.04)×10−6{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(B→K∗ℓ+ℓ−)=(0.88−0.29+0.33±0.10)×10−6{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the B→Kℓ+ℓ−B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
    • …
    corecore