
‘User-friendly’ R workflow for using low-fix rate
GPS telemetry to determine ungulate reproductive

success
Accompanying code to ‘Using low-fix rate GPS telemetry to expand

estimates of ungulate reproductive success’

Nathan D. Hooven

28 Oct 2021

User-friendly R workflow for using low-fix rate GPS telemetry to determine ungulate re-
productive success

The goal of this summary and accompanying code is to illustrate the relative ease of data
processing for inference of ungulate parturition success and outline the general process
needed to train a random forest (RF) to classify parturition and non-parturition focal days
across a time series of GPS relocation data. This approach is flexible to coarse collar
sampling schemes and can incorporate a wide variety of spatial variables, including met-
rics of movement and habitat use. Our goal was to present straightforward code that is
useful to biologists and managers with only a fundamental understanding of R program-
ming and geospatial processing, but who may be interested in examining historical and/or
contemporary GPS data for potential signals of reproductive success.

The complete R script and dataset used in this workflow are available on GitHub: https:
//github.com/nhooven/elk-repro-success-user-friendly

Required packages (and versions used to write script)

• ‘tidyverse’ (1.3.0; incl. ‘ggplot2’, ‘dplyr’, ‘tidyr’, ‘readr’, ‘purrr’, ‘tibble’, ‘stringr’, and
‘forcats’)

• ‘sp’ (1.4-1)

• ‘amt’ (0.1.3)

• ‘lubridate’ (1.7.4)

• ‘adehabitatHR’ (0.4.16)

1

https://github.com/nhooven/elk-repro-success-user-friendly
https://github.com/nhooven/elk-repro-success-user-friendly

• ‘mefa4’ (0.3-6)

• ‘randomForest’ (4.6-14)

0. Inputs

These are meant to be modified by the analyst to reflect differences in data collection,
species biology, etc.

• projection: Coordinate reference system for generating SpatialPoints objects from
coordinates

• fix.rate: Temporal resolution (in hours) for GPS collar (i.e. 13)

• temp.tol: Temporal tolerance (in hours) for resampling (deviation from fix rate,
within which locations are still considered consecutive)

• sl.period: Window size (in days) for example mean step length calculation

• mcp.period: Window size (in days) for example minimum convex polygon (MCP)
calculation

• start.date: POSIXct object indicating the beginning of the study period

• end.date: POSIXct object indicating the end of the study period

define projection
projection <- CRS("+proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs")

expected collar sampling rate (in h)
fix.rate <- 13

temporal tolerance (in h; how many h +/- the sampling rate
should be considered consecutive?)
temp.tol <- 1

window size (in days) for mean step length
(how many days shold be included for calculations?)
sl.period <- 3

window size (in days) for minimum convex polygon
mcp.period <- 7

time zone
time.zone <- "America/New_York"

2

beginning of study period
start.date <- as.POSIXct("2021-05-15 00:00:00", tz = time.zone)

end of study period
end.date <- as.POSIXct("2021-07-15 23:59:59", tz = time.zone)

1. Raw data cleaning

This workflow requires GPS relocation data with five variables: a planar x-coordinate (nu-
meric), a planar y-coordinate (numeric), a timestamp (POSIXct), a burst identifier (inte-
ger), and an individual identifier (factor). This format is simple to generate using the ‘amt’
package (Signer et al. 2020), which we demonstrate in the attached script. We included
a practice dataset (all_data.csv) of 50 simulated animal trajectories generated with the
simm.crw function in ‘adehabitatLT’ (Calenge 2019a), with a h parameter of 300 and an r
parameter of 0. We simulated tracks across a 6-month period with a sampling rate of 13
hours (yielding 335 locations), and randomly censored 10% of the generated relocations,
corresponding to a fix acquisition success/probable location retention rate of 90%.
The simulated dataset includes the following variables:

• x: Planar x-coordinate (i.e. UTM easting)

• y: Planar y-coordinate (i.e. UTM northing)

• t: Timestamp with format yyyy-mm-dd hh:mm:ss

• AnimalID: Unique individual identifier

GPS data should be screened for improbable/inaccurate locations before beginningmove-
ment metric generation and analysis. For the purposes of this script, we demonstrate
how to calculate mean step lengths and MCPs across pre-defined periods. Because step
length calculation assumes a consistent sampling (fix) rate, it is critical that the temporal
tolerance used during track resampling is reasonable (no more than a few hours) to not
affect inference.

read in data
raw.data <- read.csv("all_data.csv")

only keep columns we need
raw.data <- raw.data %>% dplyr::select(x, y, t, AnimalID)

make sure "t" is a POSIXct variable
raw.data$t <- as.POSIXct(raw.data$t)

3

vector of AnimalIDs
animal.ids <- unique(raw.data$AnimalID)

create bursts
all.data <- data.frame()

for (y in animal.ids) {

indivID <- y

subset data
indiv.data <- raw.data %>% filter(AnimalID == indivID)

make a track
indiv.track <- indiv.data %>% make_track(x, y, t, all_cols = TRUE)

create "burst_" column (resample to fix rate +/- tolerance)
indiv.track.res <- indiv.track %>%

track_resample(rate = hours(fix.rate),
tolerance = hours(temp.tol))

bind to "all.data" data.frame
all.data <- rbind(all.data, indiv.track.res)

}

2. Moving window mean step length

We used step length, the planar distance between two relocations, averaged over a multi-
day window, in this demonstration. First, we converted individual relocation data with
burst identifiers to a track and calculated step lengths within bursts with steps_by_burst
in ‘amt’. We retained all steps beginning on focal days and additional days needed to
calculate mean step length within our window size (three days in this example), across
the entire study period (we chose 15 May–15 Jul, the same as in our study). We added
a day of the year variable (DOY) to increase ease of calculation over the windows. We
then subset three-day windows iteratively within each individual, calculating the mean step
length for all steps beginning on those days.

all.steps <- data.frame()

for (z in unique(all.data$AnimalID)) {

indivID.2 <- z

4

subset all.data
indiv.data.2 <- all.data %>% filter(AnimalID == indivID.2)

create a track
indiv.track.2 <- indiv.data.2 %>% make_track(x_, y_, t_, all_cols = TRUE)

generate steps
indiv.steps <- indiv.track.2 %>% steps_by_burst()

determine how many days before and after period
we need to keep based upon the window size
buffer.days <- (sl.period - 1) / 2

filter steps across study period
indiv.steps.1 <- indiv.steps %>% filter(t1_ < (end.date +

buffer.days*24*60*60) &
t1_ >= (start.date -

buffer.days*24*60*60))

create a day of the year variable
day.seq <- seq(start.date, end.date, by = 24*60*60)

note that we add an extra day because of Daylight Saving Time in the US
DOY.seq <- as.integer(difftime(day.seq,

as.POSIXct("2021-01-01 00:00:00",
tz = time.zone),

units = "days") + 2)

add a "DOY" variable to the steps tibble
indiv.steps.2 <- indiv.steps.1 %>%

mutate(DOY = as.integer(difftime(t1_,
as.POSIXct("2021-01-01 00:00:00",

tz = time.zone),
units = "days") + 2))

compute mean step length within a 3-day moving window
indiv.steps.2.summary <- data.frame()

for loop which calculates 3-day averages of average daily sl
for (w in DOY.seq) {

subset data
focal.steps <- indiv.steps.2 %>% filter(DOY %in% c(w - buffer.days,

w,

5

w + buffer.days))

calculate mean sl for focal period
focal.mean <- mean(focal.steps$sl_, na.rm = TRUE)

bind into a df with the DOY
focal.summary <- data.frame(Animal = indivID.2,

sl.3day = focal.mean,
DOY = w)

bind to master df
indiv.steps.2.summary <- rbind(indiv.steps.2.summary,

focal.summary)

}

bind to master df
all.steps <- rbind(all.steps, indiv.steps.2.summary)

}

3. Moving window MCPs

Our second example variable was the area of a minimum convex polygon (MCP) in km2
within a 7-day moving window. We retained the required relocations (study period and
additional relocations needed to calculate MCPs) and generated SpatialPoints objects for
each window, then used the mcp.area function in ‘adehabitatHR’ (Calenge 2019b) to fit
MCPs. Choosing the temporal window size for calculating MCPs is important because (1)
too wide a windowmay fail to capture temporary space use contractions and (2) too narrow
a window may lead to extensive data gaps because at least 5 relocations are required to
fit an MCP).

all.mcps <- data.frame()

for (v in unique(all.data$AnimalID)) {

indivID.3 <- v

subset all.data to individual
indiv.data.3 <- all.data %>% filter(AnimalID == indivID.3)

subset for study period +/- days needed for calculations
mcp.days <- (mcp.period - 1) / 2

6

indiv.data.4 <- indiv.data.3 %>% filter(t_ < (end.date + mcp.days*24*60*60) &
t_ >= (start.date - mcp.days*24*60*60))

create a DOY column (as in part 2)
indiv.data.4 <- indiv.data.4 %>%

mutate(DOY = as.integer(difftime(t_,
as.POSIXct("2021-01-01 00:00:00",

tz = time.zone),
units = "days") + 2))

calculate 100% MCP areas and add to data frame
Win.MCP <- data.frame(MCP = NA,

DOY = DOY.seq)

for (p in DOY.seq) {

define relocations for moving window p
indiv.data.5 <- indiv.data.4 %>% dplyr::filter(DOY >= (p - mcp.days) &

DOY <= (p + mcp.days))

fit MCP to relocations
focal.sp <- SpatialPoints(coords = indiv.data.5[,c("x_", "y_")],

proj4string = projection)

fit an MCP (use an NA if there are not enough relocations)
focal.mcp <- ifelse(nrow(focal.sp@coords) > 4,

mcp.area(focal.sp,
percent = 100,
unin = "m",
unout = "km2",
plotit = FALSE),

NA)

Win.MCP$MCP[Win.MCP$DOY == p] <- ifelse(is.na(focal.mcp) == FALSE,
focal.mcp[[1]],
focal.mcp)

}

add CollarID and bind to master data frame
Win.MCP <- Win.MCP %>% mutate(Animal = indivID.3)

bind to master df
all.mcps <- rbind(all.mcps, Win.MCP)

7

}

merge steps and MCPs dfs
all.metrics <- merge(all.steps, all.mcps)

4. Add in “Case” variable from confirmed parturition dates

In our simulated dataset, we included “confirmed” parturition dates in an auxiliary file
(part_dates.csv), and in this section of the code we added these dates to the master
dataset and generated a “Case” variable (where 1 = parturition day and 0 = non-parturition
day), which serves as the response variable in the random forest model. More sophisti-
cated models could be trained to classify both the day of parturition and any number of
peripheral days during which movement patterns may also be contracted.

read in parturition dates file
part.dates <- read.csv("part_dates.csv")

all.metrics.2 <- data.frame()

for (q in unique(all.metrics$Animal)) {

indivID.4 <- q

subset individual's parturition date
indiv.date <- part.dates$DOY[part.dates$Animal == indivID.4]

subset individual's data only and add a "Case" column (0 or 1)
indiv.metrics <- all.metrics %>% filter(Animal == indivID.4) %>%

mutate(Case = ifelse(DOY == indiv.date,
1,
0))

bind to master df
all.metrics.2 <- rbind(all.metrics.2, indiv.metrics)

}

5. Examine distributions of predictors based upon Case

We also include code for simple density plots illustrating the difference in predictor variable
distribution depending upon “Case”. Visually, densities for mean step length appear to be

8

considerably different between parturition days (1) and non-parturition days (0), indicating
that this may be an important variable in the random forest classification.

sl.3day
ggplot(data = all.metrics.2, aes(x = sl.3day)) +

theme_bw() +
geom_density(aes(fill = as.factor(Case)),

alpha = 0.5)

0.0000

0.0025

0.0050

0.0075

0 250 500 750 1000
sl.3day

de
ns

ity

as.factor(Case)

0

1

mcp
ggplot(data = all.metrics.2, aes(x = MCP)) +

theme_bw() +
geom_density(aes(fill = as.factor(Case)),

alpha = 0.5)

9

0.0

0.3

0.6

0.9

1.2

0 1 2
MCP

de
ns

ity

as.factor(Case)

0

1

6. Random forest classification

Here we fit an RF with 1000 decision trees, specified to classify observations as either
1s or 0s (Case). We also specified a balanced sample size of 50 parturition and 50 non-
parturition days because RFs may perform poorly if the number of observations in each
class is heavily skewed to one class (which is the case here; there are far more non-
parturition days than parturition days).

train RF model
rf.model <- randomForest(as.factor(Case) ~ sl.3day + MCP,

na.action = na.omit,
sampsize = c(50, 50),
ntree = 1000,
data = all.metrics.2)

When assessing variable importance (mean decrease in the Gini index), it is clear that the
mean step length variable is much more useful in classifying observations than the MCP
variable.

10

assess variable importance
importance(rf.model, type = 2)

MeanDecreaseGini
sl.3day 41.831971
MCP 8.167029

We also generated predictions for each focal day per individual. Because we did not
build a contraction in movements into our simulated random walks, and simply chose our
“confirmed” parturition dates as those with the minimum mean step length within each
individual, predicted probability peaks are abrupt and brief, which should not be expected
in real-life datasets.

generate predictions for each focal day in the time series
predictions <- as.data.frame(predict(rf.model, type = "prob"))

pred.prob <- predictions[,2]

subset only the complete cases (i.e. rows without NA values for predictors)
all.metrics.complete <- all.metrics.2[complete.cases(all.metrics.2),]

bind probabilities to complete cases
all.metrics.complete <- cbind(all.metrics.complete, pred.prob)

plot all time series
ggplot(data = all.metrics.complete, aes(DOY, pred.prob)) +

theme_bw() +
facet_wrap(~Animal) +
geom_point(color = "darkgreen", alpha = 0.5) +
ylab("") +
xlab("") +
ggtitle("Probability time series")

11

49 50

41 42 43 44 45 46 47 48

33 34 35 36 37 38 39 40

25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

140 160 180 140 160 180

140 160 180 140 160 180 140 160 180 140 160 180 140 160 180 140 160 180

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Probability time series

Conclusions

Once a model is trained, test datasets and predictions can be generated using the same
procedures outlined in this workflow. Analysts may want to calculate a suite of predictor
variables for varying focal period sizes (Berg et al. 2021, Marchand et al. 2021) rather than
just one day like we used here and in our study on elk. We believe our workflow is easily
transferrable and augmentable to fit other study systems, species, and data collection
schemes, and may be useful to management agencies interested in identifying ungulate
parturition success.

12

References

Berg, J. E., J. Reimer, P. Smolko, H. Bohm, M. Hebblewhite, and E. H. Merrill. 2021.
Mothers’ movements: shifts in calving area selection by partially migratory elk. Journal of
Wildlife Management 85:1476–1489.

Calenge, C. 2019a. “adehabitatLT”: Analysis of animal movements. R package v. 0.3.24.

Calenge, C. 2019b. “adehabitatHR”: Home range estimation. R package v. 0.4.16.

Marchand, P., M. Garel, N. Morellet, L. Benoit, Y. Chaval, C. Itty, E. Petit, B. Cargnelutti,
A. J. M. Hewison, and A. Loison. 2021. A standardised biologging approach to infer par-
turition: An application in large herbivores across the hider�follower continuum. Methods
in Ecology and Evolution 12:1017–1030.

Signer, J., B. Reineking, U. E. Schlägel, and S. LaPoint. 2020. “amt”: Animal movement
tools. R package v. 0.1.3.

13

	0. Inputs
	1. Raw data cleaning
	2. Moving window mean step length
	3. Moving window MCPs
	4. Add in ``Case'' variable from confirmed parturition dates
	5. Examine distributions of predictors based upon Case
	6. Random forest classification
	Conclusions
	References

