165 research outputs found

    Nernst Effect and Anomalous Transport in Cuprates: A Preformed-Pair Alternative to the Vortex Scenario

    Full text link
    We address those puzzling experiments in underdoped high TcT_c superconductors which have been associated with normal state "vortices" and show these data can be understood as deriving from preformed pairs with onset temperature T>TcT^* > T_c. For uncorrelated bosons in small magnetic fields, and arbitrary T/TcT^*/T_c, we present the exact contribution to \textit{all} transport coefficients. In the overdoped regime our results reduce to those of standard fluctuation theories (TTcT^*\approx T_c). Semi-quantitative agreement with Nernst, ac conductivity and diamagnetic measurements is quite reasonable.Comment: 9 pages, 4 figures; Title, abstract and contents modified, new references added, figures changed, one more figure added; to be published on PR

    Microscopic theory of the pseudogap and Peierls transition in quasi-one-dimensional materials

    Get PDF
    The problem of deriving from microscopic theory a Ginzburg-Landau free energy functional to describe the Peierls or charge-density-wave transition in quasi-one-dimensional materials is considered. Particular attention is given to how the thermal lattice motion affects the electronic states. Near the transition temperature the thermal lattice motion produces a pseudogap in the density of states at the Fermi level. Perturbation theory diverges and the traditional quasi-particle or Fermi liquid picture breaks down. The pseudogap causes a significant modification of the coefficients in the Ginzburg-Landau functional from their values in the rigid lattice approximation, which neglects the effect of the thermal lattice motion. To appear in Physical Review B.Comment: 21 pages, RevTeX, 5 figures in uuencoded compressed tar fil

    The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau Theory

    Full text link
    It is well known that conventional pairing fluctuation theory at the Hartree level leads to a normal state pseudogap in the fermionic spectrum. Our goal is to extend this Hartree approximated scheme to arrive at a generalized mean field theory of pseudogapped superconductors for all temperatures TT. While an equivalent approach to the pseudogap has been derived elsewhere using a more formal Green's function decoupling scheme, in this paper we re-interpret this mean field theory and BCS theory as well, and demonstrate how they naturally relate to ideal Bose gas condensation. Here we recast the Hartree approximated Ginzburg-Landau self consistent equations in a T-matrix form. This recasting makes it possible to consider arbitrarily strong attractive coupling, where bosonic degrees of freedom appear at T T^* considerably above TcT_c. The implications for transport both above and below TcT_c are discussed. Below TcT_c we find two types of contributions. Those associated with fermionic excitations have the usual BCS functional form. That they depend on the magnitude of the excitation gap, nevertheless, leads to rather atypical transport properties in the strong coupling limit, where this gap (as distinct from the order parameter) is virtually TT-independent. In addition, there are bosonic terms arising from non-condensed pairs whose transport properties are shown here to be reasonably well described by an effective time-dependent Ginzburg-Landau theory.Comment: 14 pages, 5 figures, REVTeX4, submitted to PRB; clarification of the diagrammatic technique added, one figure update

    Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

    Get PDF
    Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes

    Original Article

    Get PDF
    Objective: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. Methods: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). Results: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). Conclusions: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism. (C) 2020 The Author(s). Published by Elsevier GmbH

    Earlier age of dementia onset and shorter survival times in dementia patients with diabetes

    Get PDF
    Diabetes is a risk factor for dementia, but relatively little is known about the epidemiology of the association. A retrospective population study using Western Australian hospital inpatient, mental health outpatient, and death records was used to compare the age at index dementia record (proxy for onset age) and survival outcomes in dementia patients with and without preexisting diabetes (n = 25,006; diabetes, 17.3%). Inpatient records from 1970 determined diabetes history in this study population with incident dementia in years 1990–2005. Dementia onset and death occurred an average 2.2 years and 2.6 years earlier, respectively, in diabetic compared with nondiabetic patients. Age-specific mortality rates were increased in patients with diabetes. In an adjusted proportional hazard model, the death rate was increased with long-duration diabetes, particularly with early age onset dementia. In dementia diagnosed before age 65 years, those with a ≥15-year history of diabetes died almost twice as fast as those without diabetes (hazard ratio = 1.9, 95% confidence interval: 1.3, 2.9). These results suggest that, in patients with diabetes, dementia onset occurs on average 2 years early and survival outcomes are generally poorer. The effect of diabetes on onset, survival, and mortality is greatest when diabetes develops before middle age and after 15 years’ diabetes duration. The impact of diabetes on dementia becomes progressively attenuated in older age groups

    Improvement of late gadolinium enhancement image quality using a deep learning–based reconstruction algorithm and its influence on myocardial scar quantification

    Get PDF
    Objectives: The aim of this study was to assess the effect of a deep learning (DL)–based reconstruction algorithm on late gadolinium enhancement (LGE) image quality and to evaluate its influence on scar quantification. Methods: Sixty patients (46 ± 17 years, 50% male) with suspected or known cardiomyopathy underwent CMR. Short-axis LGE images were reconstructed using the conventional reconstruction and a DL network (DLRecon) with tunable noise reduction (NR) levels from 0 to 100%. Image quality of standard LGE images and DLRecon images with 75% NR was scored using a 5-point scale (poor to excellent). In 30 patients with LGE, scar size was quantified using thresholding techniques with different standard deviations (SD) above remote myocardium, and using full width at half maximum (FWHM) technique in images with varying NR levels. Results: DLRecon images were of higher quality than standard LGE images (subjective quality score 3.3 ± 0.5 vs. 3.6 ± 0.7, p < 0.001). Scar size increased with increasing NR levels using the SD methods. With 100% NR level, scar size increased 36%, 87%, and 138% using 2SD, 4SD, and 6SD quantification method, respectively, compared to standard LGE images (all p values < 0.001). However, with the FWHM method, no differences in scar size were found (p = 0.06). Conclusions: LGE image quality improved significantly using a DL-based reconstruction algorithm. However, this algorithm has an important impact on scar quantification depending on which quantification technique is used. The FWHM method is preferred because of its independency of NR. Clinicians should be aware of this impact on scar quantification, as DL-based reconstruction algorithms are being used. Key Points: • The image quality based on (subjective) visual assessment and image sharpness of late gadolinium enhancement images improved significantly using a deep learning–based reconstruction algorithm that aims to reconstruct high signal-to-noise images using a denoising technique. • Special care should be taken when scar size is quantified using thresholding techniques with different standard deviations above remote myocardium because of the large impact of these advanced image enhancement algorithms. • The full width at half maximum method is recommended to quantify scar size when deep learning algorithms based on noise reduction are used, as this method is the least sensitive to the level of noise and showed the best agreement with visual late gadolinium enhancement assessment
    corecore