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in quasi-one-dimensional materials

Ross H. McKenzie*
School of Physics, Uniuevsity of ¹mSouth Wales, Sydney, ¹mSouth Wales 2052, Austraha

(Received 23 June 1995)

The problem of deriving from microscopic theory a Ginzburg-Landau free-energy functional to
describe the Peierls or charge-density-wave transition in quasi-one-dimensional materials is consid-

ered. Particular attention is given to how the thermal lattice motion aKects the electronic states.
Near the transition temperature the thermal lattice motion produces a pseudogap in the density of
states at the Fermi level. Perturbation theory diverges and the traditional quasiparticle or Fermi-

liquid picture breaks down. The pseudogap causes a significant modi6cation of the coefBcients in

the Ginzburg-Landau functional from their values in the rigid lattice approximation, which neglects

the efFect of the thermal lattice motion.

X. INTR, ODU CTION

A. Motivation

of the CDW transition is more dificult, because of the
large Quctuations, due to the quasi-one-dimensonality.

A wide range of quasi-one-dimensional materials un-
dergo a structural transition, known as the Peierls or
charge-density-wave (CDW) transition, as the temper-
ature is lowered. A periodic lattice distortion, with
wave vector, 2k~, twice that of the Fermi wave vector,
develops along the chains. Anomalies are seen in the
electronic properties, due to the opening of an energy
gap over the Fermi surface.

Over the past decade, due to the development of high-
quality samples and higher resolution experimental tech-
niques, data have become available which allow a quanti-
tative comparison of experiment with theory. The most
widely studied material is the blue bronze, K03MoOq.
There is a well-defined three-dimensional transition at
T~ ——183 K and careful measurements have been made of
thermodynamic anomalies and CDW coherence lengths
at the transition. The critical region, estimated from the
Ginzburg criterion is only a few percent of the transition
temperature and so the transition should be described by
an anisotropic three-dimensional Ginzburg-Landau free-

energy functional, except close to the transition temper-
ature. The challenge is to derive from a microscopic the-
ory the coeKcients in the Ginzburg-Landau &ee energy,
so that a quantitative comparison can be made between
theory and experiment. Inspiration is provided by the
case of superconductivity. The superconducting transi-
tion is well described by Ginzburg-Landau theory and
the coefBcients can be calculated from BCS theory and
depend on microscopic parameters, such as the normal
state density of states, Debye frequency, and the electron-
phonon coupling. This program is so successful that one
can even consider refinements to BC S theory, such as
strong coupling e8'ects, in order to get better agreement
between experiment and theory. However, the problem

B. Ginmburg-Landau theory

The Peierls transition is described by an order pa-
rameter, which is proportional to the 2k~ lattice distor-
tion along the chains. The order parameter is complex
if the lattice distortion is incommensurate with the lat-
tice. For a commensurate lattice distortion (e.g. , a half-
filled band), the order parameter is real. I recently con-
sidered. the general problem of Ginzburg-Landau theory
for a three-dimensional phase transition, described by a
complex order parameter, in a system of weakly coupled
chains. The key results of that study are now summa-
rized, partly to put this paper in a broader context.

The Ginzburg-Landau &ee-energy functional I"i[/] for
a single chain with a complex order parameter P(z),
where z is the coordinate along the chain, is

Near the single-chain mean. -field transition temperature
Ta, the second-order coefficient a(T) can be written

Due to Auctuations in the order parameter, this one-
dimensional system cannot develop long-range order at
finite temperature. ' To describe a finite-temperature
phase transition, consider a set of weakly interacting
chains. If P;(z) is the order parameter on the ith chain,
the free-energy functional for the system is
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(3)

This paper uses a simple model to demonstrate some
of the difficulties involved in deriving the coefficients a,
b, c, and J &om a realistic microscopic theory.

C. Microscopic theory

where J describes the interchain interactions between
nearest neighbors. A mean-Geld treatment of this func-
tional will only give accurate results if the width of the
three-dimensional critical region is much smaller than Tp.
This requires that the width of the one-dimensional crit-
ical region AtiD = (bT&) ~ /a'c ~ be sufficiently small
that

If this is not the case one can integrate out the one-
dimensional fluctuations to derive a Ginzburg-I andau
functional with renormalized coefficients,

I 2

P[4(x, y, z)] = d x AiC [ + BiOi + C
a~ay Bx

B4 B4+ C„+C.
t9y Bz

where a and a„are the lattice constants perpendicular
to the chains. The order parameter 4(x, y, z), is propor-
tional to the average of P;(z) over neighboring chains.
The three-dimensional mean-Geld temperature T3D is de-
fined as the temperature at which the the coefficient A(T)
changes sign. Close to T3D,

ARr, (0) = 1 76k~TRL. (8)

In this approximation, the coefficients in the single-chain
Ginzburg-Landau &ee-energy functional (1) are

/T)
oRr, (&) =

&'UF (+RL )
7((3)

bRr. (&) =
(4 ~), ,

The basic physics of quasi-one-dimensional CDW ma-
terials is believed to be described by a Hamiltonian,
due to Frohlich, which describes electrons with a
linear coupling to phonons. Even in one dimension,
this is a highly nontrivial many-body system and must
be treated by som. e approximation scheme. The sim-
plest treatment is a rigid-lattice one, in which the
phonons associated with the lattice distortion are treated
in the mean-Geld approximation and the zero point and
thermal lattice motions are neglected. The resulting the-
ory is mathematically identical to BCS theory. An en-
ergy gap opens at the Fermi surface at a temperature
TRg 1.14Eye /", where E& is the Fermi energy and
A is the dimensionless electron-phonon coupling. TRz, is
related to the zero-temperature energy gap ARL(0) by

A=A'i —1 i.) (6) 1 7((3)n~~

cRr. (&) =
(4 ~),

2(bT) 2

(7)

which is a measure of the fluctuations along a single
chain. It was assumed that the coefficients a, b, and
c were independent of temperature and the measurable
quantities at the transition were determined as a func-
tion of the interchain coupling. The transition tempera-
ture increases as the interchain coupling increases. The
coherence length and specific heat jump depends only on
the single-chain coherence length, (0 = (c/~a~)i~2, and
the interchain coupling. The width of the critical region,
estimated &om the Ginzburg criterion, was virtually pa-
rameter independent, being about 5—8% of the transition
temperature for theory should be valid over a broad tem-
perature range.

The transition temperature TqD and the coefficients
A ) B) C~ ) Cy y

and C, can be written in terms of the
interchain interaction J and the coefficients a, b, and c
of a single chain. The coefficients in (5) determine mea-
surable quantities associated with the transition, such as
the specific heat jump, coherence lengths, and width of
the critical region.

Most of the physics is determined by a single dimen-
sionless parameter,

where u~ is the Fermi velocity and ((3) is the Riemann
( function. If 4t~ is the electronic bandwidth perpendic-
ular to the chains [see (57)], then the interchain coupling
is given by

(4t~ 5
JRL =

I ~
cRL(+).

( Vy

It might be hoped that the transition in real ma-
terials can be described by the mean-field theory of
the functional (1), with the coefficients (9)—(11). How-
ever, this is not the case for several reasons. (i) The
width of the critical regime given by the one-dimensional
Ginzburg criterion is very large: Lt&D ——0.8, sug-
gesting that fluctuations are important because condi-
tion (4) is not satisfied. (ii) A rigid-lattice treatment
predicts a metallic density of states at all temperatures
above TRp. In contrast, magnetic susceptibility, op-
tical conductivity, and photoemission measure-
ments suggest that there is a gap or pseudogap in the
density of states for a broad temperature range above
Tp. (iii) The transition temperature, specific heat jump,
and coherence lengths are inconsistent with rigid-lattice
predictions (Table I). This failure should not be sur-
prising, given that recent work has shown that in the
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Dimensionless
ratio

Experimental
value

Schulz
model

Rigid lattice
theory

3.4 1.43

(.os
Vp

0.18 + 0.04 0.23 0.23

TABLE I. Comparison of experimental values for
Kp.3Mo03 of various dimensionless ratios with the predictions
of two simple microscopic models. The three-dimensional
transition temperature is T& = 183 K. The zero-temperature
energy gap b, (0) is estimated from optical conductivity data
(Ref. 22). A Fermi velocity of v~ = 2 x 10 cm/sec was es-
timated from band structure calculations (Ref. 66). AC is
the specific heat jump at the transition (Ref. 5) and pTJ is
the normal state electronic speci6c heat that has been cal-
culated from the density of states estimated from magnetic
susceptibility measurements (Ref. 20) well above the transi-
tion temperature. The longitudinal coherence length (o has
been estimated from x-ray scattering experiments (Ref. 6). In
both models the dimensionless ratios are independent of any
parameters, except for K(0)/knTp in Schulz's model, which is
described in Appendix A. The rigid lattice theory (Refs. 15
and 16) involves a mean-field treatment of the single-chain
Ginzburg Landau functional (1), with the coefficients (9—11).

D. Overview

Discrepancies between phonon rigid-lattice theory and
the observed properties of the Peierls state well below the
transition temperature Tp were recently resolved, ' by
taking into account the effect of the zero-point and ther-
mal lattice motion on the electronic properties. It was
shown that the lattice fI.uctuations have an efFect similar
to a Gaussian random potential. This mapping breaks
down near the transition temperature, because of the
phonon dispersion, due to the softening of the phonons
near 2k~. In this paper, this dispersion is taken into ac-
count and the efFect of the large thermal lattice motion
near the transition temperature is studied.

The thermal lattice motion has the same effect on the
electronic properties as a static random potential with
finite correlation length. Close to the transition tem-
perature, the problem reduces to a simple model, cor-
responding to a single classical phonon, which can be
treated exactly (Sec. II). This model was first studied by
Sadovskii. It was recently used in the description of the
destruction of spin-density-wave states by high magnetic
fields. The one-electron Green's function is calculated
in Sec. III. There is a pseudogap in the density of states
(Fig. 1). The complexity of this simple model is indi-

three-dimensionally ordered Peierls state the zero-point
and thermal lattice motions must be taken into ac-
count to obtain a quantitative description of the optical
propertieS 22

p
23 i 31 33

The next level of approximation is to use the coefFi-
cients (9 and 10) and take into account the intrachain
order parameter fIuctuations and the interchain coupling
and use results similar to those in Ref. 10. This is the ap-
proach that has been taken previously. ' ' There are
two problems with this approach. First, if the dimen-
sionless parameter r, given by (7), is evaluated using the
expressions (9—11), the result is

1.5—

0.5

0.5
I

1.5 2.5

Hence, the temperature dependence is quite different
from the dependence K T that was assumed in
Refs. 10, 35, and 36 and the analysis there needs to
be modified. The second and more serious problem is
one of self-consistency. The coeKcients a, 6, and c are
calculated neglecting Buctuations in the order parame-
ter, which will modify the electronic properties which in
turn will modify the coefIicients. In this paper, a simple
model is used to demonstrate that the fIuctuations have
a significant efFect on the single-chain coefFicients. An al-
ternative microscopic theory, due to Schulz, and which
takes into account fIuctuations in only the phase of the
order parameter is brieQy reviewed in Appendix A.

FIG. 1. Pseudogap in the density of states near the
three-dimensional transition temperature TI . Perturbative
treatments (dotted line, compare Refs. 34 and 41) give an ab-
solute gap @ at the transition temperature, whereas the exact
treatment (solid line) gives only a pseudogap. The energy E
is relative to the Fermi energy and the density of states is nor-
malized to the free-electron value pp. The density of states
is symmetrical about E = 0. This result is only valid suf-
6ciently close to T~ that the longitudinal CDW correlation
length (~~ )) vs/@. As the temperature increases above Ti,
f~~ decreases and the density of states at the Fermi energy in-
creases, i.e., the pseudogap gradually fills in (see Figs. 5 and
6 in Ref. 48).
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FIG. 2. Breakdown of the quasiparticle picture. The elec-
tronic spectral function is shown for several different momenta
k, relative to the Fermi momentum k~. As the momentum
approaches k+ the spectral function broadens signi6cantly,
similar to the behavior of a Luttinger liquid. Inset: Momen-
tum dependence of the occupation function n(k). The dashed
line is the result in the absence of a pseudogap, i.e., a nonin-
teracting Fermi gas.

E. Previous work on Quctuations and the pseudogap

To put this paper in context some important earlier
work is briefly reviewed. Lee, Rice, and Anderson con-
sidered how fluctuations in the order parameter produce
a pseudogap in the density of states. It is important
to be aware of the assumptions made in their calcula-
tion. Although their results describe much of the physics
on a qualitative level, for the reasons described below,
their results cannot be expected to give a quantitative
description of the density of states near the CDW tran-
sition. The starting point of Lee, Rice, and Anderson
was the one-dimensional Ginzburg-Landau functional (1)

cated by two nontrivial many-body effects: (i) Perturba-
tion theory diverges but is Borel summable. (ii) The
traditional quasiparticle picture breaks down (Fig. 2),
reminiscent of behavior seen in Luttinger liquids. To
illustrate that calculations based on perturbation theory
can be unreliable, it is shown that a predicted scaling
relation between the specific heat and the temperature
derivative of the magnetic susceptibility does not hold
if the exact, rather than approximate, density of states is
used in the calculation. Using this model the coeKcients
a, b, and c are calculated in Appendix B. The coefIi-
cients deviate significantly &om the rigid-lattice values if
the pseudogap is comparable to or larger than the transi-
tion temperature. In Sec. VI, experimental data are used
to estimate the pseudogap in Ko 3Mo03.

with a real order parameter and with the coefEcients de-
rived from rigid-lattice theory [see Eqs. (9—11)j. Earlier,
Scalapino, Sears, and Ferrell evaluated the correlation
length (II (T) for one-dimensional Ginzburg-Landau the-
ory, with an exact treatment of the fIuctuations in the
order parameter; (II(T) only diverges as T ~ 0. The
results of this calculation were used by Lee, Rice, and
Anderson as input in a random potential with correla-
tions given by

(&(z)&(z')) = &R~(T)"xX [-
I

z —z'/(II(T)1 (14)

where ARL(T) is the rigid-lattice (BCS) order parameter
and the average is over the thermal fluctuations of the
order parameter. The electronic Green's function was
calculated using Eq. (14) and a formula originally used
for liquid metals (essentially, second-order perturbation
theory for the random potential). They found a gradual
appearance of a gap as the temperature decreased. For
T~ ( 0.25TRL, an absolute gap of magnitude ARL(0) ap-
pears. Lee, Rice, and Anderson suggested that a three-
dimensonal transition occurs for TI 0.25TRz, based on
the temperature at which (II (T) becomes extremely large.
There are several problems with trying to use these re-
sults to give a quantitative description of the CDW tran-
sition, because of the following assumptions. (i) A real
order parameter. Most CDW transitions are described
by a complex order parameter, for which quantitatively
distinct behavior occurs. For example, the transition to
very large correlation lengths for TI 0.25TRL does not
occur for a complex order parameter. (See Fig. 6 in
Ref. 12.) (ii) Rigid-lattice coeQcients. It is shown in this
paper that the pseudogap, due to the thermal lattice mo-
tion, causes the Ginzburg-Landau coefIicients to deviate
significantly from their rigid-lattice values (Fig. 4). (iii)
Perturbation theory. It is demonstrated in this paper that
this is unreliable. In particular as (II(T) ~ oo in (14),
only a pseudogap rather than an absolute gap develops
in the density of states (Fig. 1).

Rice and Strassler calculated the contribution of the
phonon Buctuations to the electronic self-energy in the
Migdal approximation, i.e. , second-order perturbation
theory. Interchain interactions were included through an
anisotropic phonon dispersion. They found a pseudogap
in the density of states above the transition temperature.
At Tp, there is an absolute gap whose magnitude is de-
termined by the electron-phonon coupling and the inter-
chain interactions. They equated the observed transition
temperature with the single-chain mean-field transition
temperature To, which they found to be significantly re-
duced below the rigid-lattice value TRg and to vanish as
the interchain coupling vanishes.

In the limit of weak interchain interactions, the an-
alytic form of the density of states is identical to that
of Lee, Rice, and Anderson. However, it is not com-
monly appreciated that the origin of the pseudogap in the
two calculations is quite difFerent. The magnitude of the
Rice and Strassler pseudogap is proportional to the ther-
mal lattice motion (compare Sec. II A), while the pseu-
dogap studied by Lee, Rice, and Anderson pseudogap
is by assumption equal to the rigid-lattice gap b, Rr, (T).
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Calculations similar to that of Rice and Strassler have
been performed by Bjelis and Barisic, Suzumura and
Kurihara, Patton and Sham, and Chandra. The
main problem with these calculations is that they are
based on perturbation theory.

ing A(z) as a static random potential with mean Ao and
correlations

(&(z)&(z')*) = &o+»(z —z'),

where

II. MODEL HAMILTONIAN
=1 ~2A:~

p = —XAVy (dgI + Coth
2 2T (2O)

The starting point for this paper is the following one-
dimensional model. The states in an electron gas with
Fermi velocity v~ are described by spinors @(z). The up-
per and lower components describe left and right moving
electrons, respectively. The phonons are described by the
Geld

&(z) = g). (t» +.+b'~.. .)e"'
2 (dye F +q

This model is expected to be reliable, except near the
transition temperature, where there is signiGcant disper-
sion in the phonons. This dispersion is now taken into
account.

Near the transition temperature, the phonons can be
treated classically, since in most materials, the &equen-
cies of the phonons with wave vector near 2k~ are much
smaller than the transition temperature (Table II). Fol-
lowing Rice and Stassler renormalized phonon &equen-
cies A(q, T) are used in the expression for the correlations
of the random potential,

where b, destroys a phonon of momentum 8 and &e-
quency u, and g is the linear electron-phonon coupling.
The dimensionless electron-phonon coupling A is defined.
by

(21)

At the level of the Gaussian approximation the phonon
dispersion relation can be written in the form

A = 2g a~/7l Vyldg
~l(V T)' = O(T)' I+ (V

—»~)'&ii(T)' . (22)

where a is the lattice constant along the chains. The
electronic part of the Hamiltonian is4

Evaluating (21) then gives (18), where

8
H~) = dzC z —ivy o3—

|9Z

1
+ - [A(z)0.+ + A(z)'0. ] 0 (z),

where o3 and o~ = oq + io~ are Pauli matrices.
This paper focuses on the following model, where b, (z)

is replaced with a random potential with zero mean and
Gnite length correlations:

(&(z)) = o (&(z)&(z')*) = 0"»(—lz —z'I/((~).

(18)

(~~ is the CDW correlation length along the chains. In
most of this paper, g will be treated as a parameter.
It is central to this paper, being a measure of the ther-
mal lattice motion and a measure of the pseudogap in the
density of states. This paper focuses on behavior near T~
and so the limit (~~vP/vy ~ oo is taken. A rough argu-
ment is now given to justify using this model to describe
thermal lattice motion near the phase transition.

A. Thermal lattice motion

In rigid-lattice theory, A(z) is replaced by its expec-
tation value (b, (z)) = Ao. To go beyond this, the ef-
fect of the quantum and thermal lattice fluctuations in
the Peierls state was recently modeled ' ' by treat-

KO.3Mo03
(TaSe4) q I
KzPt(CN)4Brp. 3
TSeF-TCNQ

TJ (K) E(0) (meV) TI /Tag A(0) (K)
183 90 0.31 80
263 200' 0.20 130
120' 100 0.18 58~
29 10 0.42

Reference 22.
J. P. Pouget, B. Hennion, C. Escribe-Filippini, and M. Sato,

Phys. Rev. B 43, 8421 (1991).
Reference 27.
S. Sugai, M. Sato, and S. Kurihara, Phys. Rev. B 32, 6809

(1985).
'Complete ordering does not occur (Ref. 4).
Reference 26.

g Reference 4.
"From activation energy of dc conductivity, Ref. 19.

TABLE II. Parameters for several quasi-one-dimensional
materials. The observed transition temperature TI is always
much smaller than the rigid-lattice transition temperature
TRg. The phonons near 2k~, which soften at the transition,
can be treated classically, since they have frequencies of the
order of O(0) (estimated from Raman and neutron scatter-
ing), which is much smaller than TI . The zero-temperature
gap A(0), estimated from the peak in the optical absorption
was used to calculate Tar, [TRL = A(0)/1. 76k'].
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Note that this expression together with (18) is then quite
different from (14) used by Lee, Rice, and Anderson. 24 In
the limit (~~

-+ 0, i.e. , the phonons become dispersionless
and the sum in (21) becomes a b function and giving (19)
(with Ap ——0) and (20).

The rms fiuctuations bu in the positions of the atoms,
due to thermal lattice motion, is related to the Debye-
Waller factor and given by

(bu)2 = kT ) MOq, T 2 (24)

This is related to g = (2Mtug) ~ gbu. Hence, g is pro
abortional to the thermal lattice motion.

If @ is defined by (23), it diverges as T -+ T~, because
as T M TI, O(T) M 0,

Although the expressions (23), (28), and (29) for @
in the different regimes look very difFerent, @ is actually
weakly temperature dependent and does not vary much
in magnitude. To see this, (28) can be written as

1+ (p (i(T)) —1 . (30)

The postfactor is a slowly varying function of p, (~(T).
Since well above TI, p, (~(T) 1 [e.g. , for Ke sMo03
(~(300 K) 4 A (Ref. (6) ) the postfactor does not vary
by more than a factor of 2, although p (~(T) varies by
several orders of magnitude. Johnston used a crude
method of estimating the pseudogap and found it to be
weakly temperature dependent above Tp for Ko 3Mo03.

B. Solution of the model
$~~(T) ~ oo with O(T)(~~(T) finite. (25)

However, in a real crystal, the phonons are three-
dimensional and the thermal lattice motion is finite. We
define

2
vp
a, )-O(q, T)2 (26)

and write the three-dimensional dispersion relation (for
a tetragonal crystal) in the form

O(q, T)' = O(T) 1+ (qadi
—2k')'(ii(T)

+(n —Qi)'E. (T)' (27)

2
@2=~~T

~&~l(T) ) '&ii(T)& (T)'

where Q = (Q~, 2k~) is the nesting vector associated
with the three-dimensional CDW transition [see Eq.
(56)]. Due to the quasi-one-dimensionality of the crystal,
the dispersion perpendicular to the chains is small and
$~ (( (~~. Let a denote the lattice constant perpendicu-
lar to the chains. Performing the integral over the wave
vector in (26) gives

Sadovskii4s solved the one-dimensional model (17) and
(18) exactly. He calculated the one-electron Green's func-
tion in terms of a continued &action by finding a recur-
sion relation satisfied by the self energy. He found that
the Green's function reduced to a simple analytic form in
the limit of large correlation lengths ((~~ )) v~/@). This
can be seen by the following rough argument. In the limit

(~~
-+ oo, the moments of the random potential E(z) are

independent of position:

(&( )) = 0 (&( )&( ) ) = @ .

This means that the random potential has only one
nonzero Fourier component, i.e., the one with zero wave
vector.

The potential can be written A(z) = v@, where v is a
complex random variable with a Gaussian distribution.
Averages over the random potential can then be written

(32)

It is then a straightforward exercise to evaluate the av-
erages of di8'erent electronic Green's functions.

(28)
III. ONE-ELECTRON GREEN'S FUNCTION

NEAR Tp

where p, is a wave vector cutoK perpendicular to the
chains. If p, = vr/a, this expression reduces to (23) in
the one-dimensional limit (~ (( a . Near the transition,
(~(T) -+ oo, giving dvdv*

G (ie„,k) = e ""'G (ie„,k, v) (33)
2

~ ~g l a~vs
O(T) ~(ii (T)(i (T)

' (29)
where

The matrix Matsubara Green's function, defined at the
Matsubara energies e = (2n+1)m T, for the Hamiltonian
(17) with (31) is

From (25) and the fact that ((((T)/(~(T) is finite, it fol-
lows that vP is finite as T + TI . Note that the magnitude
of this quantity is dependent on the choice of the momen-
tum cuto8 p . The above treatment is quite similar to
Schulz's discussion of Quctuations in the order parameter
in the Gaussian approximation.

—[ze~ — yk'v0' —2 'lp(vo+ + v (7 )] 34
e2 + (kvp. )2 + VV'@2

is the matrix Green's function for the Hamiltonian (17)
with A(z) = v@. The ofF-diagonal (anomalous) terms
vanish when the integral over v is performed, indicating
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there is no long range order. The integral over the phase
of v can be performed and variables changed to y = vv*

and

p(E) =pp, 8(E —g ) (41)

G(ie„, k) = —(ie„—kvFcrs) dy
p e„+ kvF

(35)

is obtained. Sadovskii obtained the same expression
by diagrammatic summation. For the case of a half-filled
band, v is strictly real and the resulting expressions are
the same as those obtained by Wonneberger and Laut-
enschlager. 4 Expanding (35) in powers of g gives

G(ie, k) = Gp(ie„, k) drpe ~ )
0 + kvF

(36)

where Gp ——(ie„—kvF0 2) is the free-electron Green's
function. Performing the integral over p gives

$2
G(ie„, k) = Gp(ie„, k) ) n! + kvyn=0 n

This is a divergent series and asymptotic expansion.
However, it is Borel summable. This divergence sug-
gests that perturbation theory as used in Refs. 34, 40—44
may give unreliable results. This can be seen in Fig. 1
and Sec. IIIE.

This latter form has been assumed in much earlier
work 17,20,44)52

The above expressions for the density of states are
all for infinite correlation length ((!~@/VF ~ oo), i.e. ,

very close to the three-dimensional transition tempera-
ture TI . What happens above TI as the intrachain cor-
relation length decreases? This problem was considered
in detail by Sadovskii. [He calculated the density of
states for the random potential (18) with finite (!~ ex-
actly. ] As the correlation length decreases, the density of
states at the Fermi energy increases, i.e., the pseudogap
fills in. How quickly this happens depends on the dimen-
sionless ratio VF/(Q(~!). [See Eq. (48) below and Figs.
5 and 6 in Ref. 48.] Sadovskii showed that perturba-
tion theory 4'4 only gives reliable results for!E~ & @,
when (~! ( VF/@, i.e., well above TF.

What happens below TI as the intrachain correlation
length decreases? In Ref. 31 it was shown that in the
three dimensionally ordered Peierls state, well below TI,
there is an absolute gap with a subgap tail that increases
substantially as the temperature becomes larger than the
phonon &equency. A smooth crossover to the pseudogap
discussed here is expected. It is an open problem to con-
struct a single theory that can describe the density of
states over the complete temperature range.

B. Spectral function

A. Density of states

The electronic density of states is calculated directly
&om the imaginary part of the one-electron Green's func-
tion (35). The result is

s(&) =&of
de~ ' , , 0 (i E ]' —y ')

(Eli' &El=2p, —exp -( —
I

KElt '
p(E) =2pp~ —

~

for E((@, (4O)

p(E) pp for E » g .

Figure 1 shows that the exact result (39) (solid line) de-
viates significantly from the result of second-order per-
turbation theory in Refs. 34 and 41 (dashed line),

where pp
——1/vrvF is the free-electron density of states

and erfi is the error function of imaginary argument.
Figure 1 shows the energy dependence of the density of
states. It vanishes at zero energy (the Fermi energy) and
is suppressed over an energy range of order @, i.e. , there
is a pseudogap. It has the asymptotic behavior:

+b E+ Q(kvF)2 ~ rpg2

~f'(kv )' —
E'&~~0 E2 (k )@2 ( @2

(42)

where the momentum k is relative to the Fermi momen-
tum k~. Note that this form is very di8'erent &om the
Lorentzian form associated with the quasiparticle pic-
ture and perturbation theory. The spectral function is
asymmetrical, very broad, and has a significant high en-
ergy tail. Figure 2 shows how the quasiparticle weight
is reduced near the Fermi momenta, i.e., the quasiparti-
cles are not well defined. This was first pointed out by
Wonneber ger and Lautenschlager for the corresponding
model for a half-filled band. This is strictly a nonpertur-
bative efFect. In perturbation theory, the quasiparticles
are well defined. This breakdown of the quasiparticle pic-
ture is similar to the properties of a Luttinger liquid.

The momentum distribution function n(k) at T = 0
for right moving electrons is given by

The spectral function for right moving electrons of mo-
mentum k is given by

1
A(k, E) = ——Im Gii(k, E + iq)

OO

d(pe ~ 8 E —Q(kvF)2+ y@2
0
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0

n(k) = dEA(k, E)

f kvs 't
!

1 — 7r
I @~

(kvg1 '
x exp (43)

depends on @/T and is shown in Fig. 3. A similar
result was recently usedss to explain the temperature
dependence of the electronic specific heat near a spin-
density-wave phase boundary of the organic conductor
(TMTSF)2C104. Note that when @ T, C, (T) can be
slightly larger than Co(T), because E2g has a maxi-
mum near E T and for E g, p(E) is larger than po
(Fig. 1).

where erf is the error function. The inset to Fig. 2 shows
how the momentum distribution n(k) at T = 0 is smeared
over a momentum range Sk @/vy. The absence of a
step at k = k~ indicates that there is no clearly de6ned
Fermi surface. However, this is not like in a Luttinger
liquid, but solely due to disorder. In fact, in an ordinary
metal with mean &ee path S, similar behavior is seen;
disorder smears out n(k) over a momentum range bk
1/E

C. Electronic specific heat

The electronic specific heat C, (T) is related to the den-
sity of states p(E) by

C, (T) = —— dEE p(E)

D. Pauli spin susceptibility

The Pauli spin susceptibility y(T) is related to the den-
sity of states p(E) by

X(T) = Va — dE~(E) &E
Bf

0
(45)

where f (E) is the Fermi-Dirac distribution function and
p~ is a Bohr magneton. In the absence of a pseudogap,
y(T) = y~~pp = go, wllich is independent of temperature.
If the expression (39) is used for the density of states in
the presence of a pseudogap, then y(T)/yo only depends
on g/T and is shown in Fig. 3. This result will be used
in Sec. VI to provide an estimate of the pseudogap in
Ko 3Mo03.

where f(E) is the Fermi-Dirac distribution function. In
2 2

the absence of a pseudogap, C, (T) = s poT = Co(T).
If the expression (39) is used for the density of states
in the presence of a pseudogap, then C, (T)/Co(T) only

1.2—

0.8

0.6

E. Chandra's scaling relation

The efFect of thermal lattice Buctuations on the tem-
perature dependence of y(T) was first considered by Lee,
Rice, and Anderson. They argued that as the temper-
ature is lowered towards T~ the intrachain correlation
length increases, more of a pseudogap opens in the den-
sity of states and y(T) decreases. This problem was re-
cently reconsidered by Chandra who derived a scaling
relation between the derivative dy/dT and the specific
heat C~ in the critical region. I now repeat the essential
features of her argument. She calculated the electronic
self-energy in the Born approximation, taking into ac-
count the interchain interactions and the 6nite mean &ee
path of the electrons. She assumed that the pseudogap is
much larger than the transition temperature (g &) TI, it
will be shown in Sec. VI that this is a poor approximation
for Ko sMoOs), so that y(T) p&2p(0). Chandra also as-
sumed that the temperature dependence of the density
of states at the Fermi energy is determined solely by the
temperature dependence of (~~(T). Moreover, based on
the Born approximation, she found

1
~(o) ( (T). (46)

Defining t—:!T—TJ !/TI then gives the scaling relation

dy(T) d 1 d

dT dT
$~~ (T) dT

FIG. 3. Modification of the electronic specific heat C, (T)
and the Pauli spin susceptibility y(T) by the pseudogap. Both
are normalized to their values in the absence of the pseudogap.

where use has been made of the temperature dependence
of (~~ (T) and Cy in the Gaussian approximation. is

This same scaling relation was suggested earlier by
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1/2
= (0.54 + 0.01)

~ )
(48)

(see Fig. 6 in Ref. 48) rather than (46). This will give

Horn, Herman, and Salamon. They claimed to have
found the critical exponent for dy/dT to be —0.5 for
TTF-TCNQ. Kwok, Griiner, and Brown s claim to have
observed a scaling between d(Ty)/dT and CJ within a
30 K region about T~ ——183 K for Ko 3Mo03. However,
Mozurkevich has argued that the Gaussian approxima-
tion is not valid in this temperature range. Chung et
al.ss found that dy/dT was comparable to C~ when a
background contributien was subtracted &em the latter.
Brill et al. found that y was proportional to the en-
tropy (evaluated from integrating the specific heat) be-
tween 140 and 220 K. (This is equivalent to a scaling
between dg/dT and CJ .) They show that this is what is
expected if y and C~ are derived from a &ee energy func-
tional in which the complete magnetic field dependence
is contained in the field dependence of Tp.

Chandra's derivation of the scaling relationship (47)
is not valid. It depends on (46) which is a direct result
of the perturbative treatment of the lattice fIuctuations.
The exact Green's function calculated by SadovskH
gives difFerent results He .found that for (~~(T) )) v~/@,

The integrals ever y in the above expressions can be
written in terms of error functions and incomplete p
functions. However, for beth numerical and analytical
calculations it is actually more convenient to use the ex-
pressions above. As vP -+ 0, the above expressions reduce
to the rigid-lattice values (9—11).

Single chai-n mean field-transition temperature. To is
determined by the temperature at which the second-order
Ginzburg-Landau coefficient (50) vaiiishes:

a(To) = 0. (53)

This defines relations between To/TRL and Q/To, shown
in Fig. 4. (The inset shows To/TEL versus g/TRL. ) The
pseudogap suppresses the transition temperature. At a
crude level, this is because in the presence of a pseudogap
opening a gap due to a Peierls distortion causes a smaller
decrease in the electronic energy than in the absence of
a pseudogap. In most materials TI & 0.4TRL (Table
II) and so the inset of Fig. 4 implies @ TRL which
is comparable to the zero-temperature gap. Rice and
Strassler4i found from second-order perturbation theory
that for Tp (( TRz„ iP 1.05TRL. Thus, the single-chain
mean-field transition temperature can be quite different
from TRi„defined by (8), and often referred to as the
mean-field transition temperature, and so no experimen-

d~(T) ,-2/4
dT (49)

and so the scaling relation (47) does not hold. It should
be stressed that this result assumes @ )) TJ, a condition
that is poorly satisfied in most materials (Sec. VI).

IV'. PROPERTIES
OF THE GINZBURG-LANDAU COEFFICIENTS

0.8

In Appendix B, the coefficients a, b, and c in the
Ginzburg-Landau free energy (1) describing the Peierls
transition are evaluated in the presence of the random
potential (31), which is used here to model the thermal
lattice motion. The calculation is based on a linked clus-
ter expansion similar to that used to derive the Ginzburg-
Landau functional for superconductors. The results are

0.6

0.4

0.2

'FVF

e2

(
2 + @2)3/2) (50)

T oo
Q

2

b(T) = dye
4v~ o ((e2 + @2) /

5V(0 e-)'
(e'+ V@') ')

Vy'T 2 d+8
( ) 4 ~ fl

(
2 + y2)kj/2

(51)

(52)

PEG. 4. The pseudogap, due to thermal lattice motion, has
a significant efFect on the coeKcients in the Ginzburg-Landau
free energy (1) for a single chain. The ratio of the single-chain
mean-field transition temperature To and the coeKcients b
and c to their rigid-lattice values [given by (9—11)] are shown
as a function of the ratio of the pseudogap @ to the temper-
ature. For vP & 2.7T, the coefBcient b becomes negative and
the transition will be first order (Sec. IV). Inset: Relationship
between To/&RL and 0/&RL ~
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tal signatures are expected at T = TRi, .
Fourth or-der coefficient. The ratio of the fourth-order

coeFicient b to its rigid-lattice value as a function of the
ratio of the pseudogap @ to the temperature is shown
in Fig. 4. Note that b is negative for vP/T ) 2.7. This
will change the nature of the phase transition. One must
then include the sixth-order term in the &ee energy. If it
is positive (I have calculated it and found it to be posi-
tive for this parameter range), then the transition will be
first order. A complete discussion of such a situation is
given by Toledano and Toledano. Imry and Scalapino
have discussed the effect of one-dimensional fluctuations
for this situation. At the mean-Geld level, there is a
coexistence of phases for the temperature range defined
by

0 (a(T) &
b(T)'

(54)

where d(T) is the sixth-order coeKcient. Hysteresis will
be observed in this temperature range. I recently sug-
gested that the 6rst-order nature of the destruction by
high magnetic 6elds of spin-density-wave states in or-
ganic conductors is due to similar effects. If at low tem-
peratures the electron-phonon coupling A is varied, then
g/TRL Ae /". According to the inset of Fig. 4, there
will be a critical coupling below which the CD& phase
will be destroyed. This transition will be first order. It
is interesting that Altshuler, Ioffe, and Millis recently
obtained a similar result for a two-dimensional Fermi liq-
uid (with a quasi-one-dimensional Fermi surface), using
a very different approach.

However, it should be pointed out that when b is small,
corrections due to other effects such as a finite correla-
tion length and interchain coupling, will be important
and could make b positive. It is unclear whether this
unexpected behavior is only a result of the simplicity of
the model or actually is relevant to real materials. The
three-dimensional transition occurs when the parameter
r, defined by (7), becomes suKciently small. Generally
this is assumed to be due to the temperature becoming
sufBciently low. However, I speculate that the transition
could alternatively be driven by b becoming suFiciently
small. The fact that g (2—3)T~ in Kp sMoOs (Sec. VI)
is consistent with 6 being small.

The coeQcient of the longitudinal gradient term is
given by (52). It can be shown that c(T)/c (T) is a
universal function of g/T (see Fig. 4) and that the pseu-
dogap reduces the value of c.

Interchain coupling. Consider a crystal with tetrag-
onal unit cell of dimensions a x a x a„where the z
axis is parallel to the chains. For a tight-binding model
the electronic band structure is given by the dispersion
relation,

shown that imperfect nesting of the Fermi surface [i.e.,

E(k) E—(k+ Q)] occurs for the nesting vector,

Q = (vr/a, vr/a, 2k~). (56)

To calculate the interchain coupling J in the Ginzburg-
Landau functional (3), it is assumed that the one-
dimensional Green's function (34) can simply be replaced
with the corresponding one with the anisotropic band
structure, given by Eq. (55). The calculation is then
essentially identical to the rigid-lattice calculation of
Horovitz, Gut&eund, and Weger and so only the re-
sult is given [compare (12)]:

Since the pseudogap reduces the value of the longitudinal
coeFicient c, it will also reduce the interchain coupling.

V. MEAN-FIELD THEORY OF A SINGLE CHAIN

LeiD ——
(a')'

2 0
(58)

An important length scale is the coherence length (p,
defined by

(59)

The one-dimensional Ginzburg criterion provides an es-
timate of the temperature range, ATqD, over which crit-
ical fluctuations are important

ATiD t' b Tp

T (ass/2cl/2 )
1

(2(p Zk Ci D )

The single-chain Ginzburg-Landau functional with the
coefBcients discussed in the previous section is now
considered. In particular, it is shown that the one-
dimensional fluctuations can be much smaller than for
the functional with the rigid-lattice coeKcients. The
first step is to consider the temperature dependence of
the second-order coeKcient a(T) near Tp, the mean-field
transition temperature. This is diFicult because, to be
realistic, the temperature dependence of the parameter g
must be included. This is done at a crude level, using the
simple model based on the discussion of thermal lattice
motion in Sec. II A. This is then used to evaluate a', de-
fined by (2), and needed to evaluate physical quantities
associated with the transition: the speci6c heat jump,
the coherence length, and width of the critical region.

The jump in the speci6c heat at T0 is

E(k) = 2t~[c s(ko—a ) + cos(k„a )]
—2tii cos(k a ). (55)

(60)

A. Self-consistent deterxnination of the pseudogap

Assume the band structure is highly anisotropic, i.e.,
The Fermi velocity v~ is defined by v~

2t~~a sin(k~a ). Horovitz, Gut&eund, and Weger have
At the level of the Gaussian approximation, the

phonon dispersion is related to the Ginzburg-Landau co-
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efBcients by

O(q, T)' = A~~2 a(T) + c(T) (q —2k~) 2

+Ja (q~ —Q~) (61)

dye
(52 + io$2)5/2

&n

(62)

It follows that Q/T is a universal function of t~/T.
Dependence of To on the interchain interactions The.

self-consistent equation for the pseudogap (62) can be
solvecl slxIlllltaIieollsly w1th the equatloIls foI' To aIlcl (57)
to give the single-chain mean-field transition tempera-
ture, as a function of the interchain interactions. The
transition temperature is then a monotonic increasing
function of the interchain hopping. A similar proce-
dure was followed by Rice and Strassler. The transi-
tion temperature tends to zero as the interchain cou-
pling tends to zero, consistent with the fact that there
are no finite-temperature phase transitions in a strictly
one-dimensional system.

Hence, the phonon dispersion depends on the pseudogap
However, it was shown in Sec. IIA that Q depends

on the dispersion. Hence, @ xnust be determined self-
consistently. Equation (29) gives the dependence of the
pseudogap at Tp on the phonon dispersion. Equation
(52) gives the dependence of the coefficient c(T) on the
pseudogap. These can be combined with (57) to give

C. Speci6c heat jump

T ) 1/2

a(T) =1.74'(0)
~

1—
Tx j (67)

Within a BCS type of &amework, the specific heat dis-
continuity is given by

dA2 A(0)'LC —pp
——3.03pp

Tp p
(68)

Using A(0) = 1.76kxxTICI, and p = 2vr po/3 gives

The specific heat jump LC at the transition temper-
ature is calculated from Eq. (58). It is shown in Fig. 5.
Note that the jump is much larger than the rigid-lattice
value of 1.43prp. The trend shown in Fig. 5 can be
explained by a rough argument correlating the sizes of
AC/GATI and 6(0)/kIITI Si.mply p«, if A(0)/kxsTJ
is large, then A(T) will have a large slope at TI . It
has previously been noted experimentally that the or-
der parameter has a BCS temperature dependence with
A(0) and Tx treated as independent parameters. Some
theoretical justification was recently provided for such a
temperature dependence well away &om Tp.3 Close to
Tp the BCS form gives

B. Evaluation of a'

d (vj ) g A(T)
dT E,T) 2T2 Y(T) (63)

where

It is now assumed that the temperature dependence of
the pseudogap vP is given implicitly by Eq. (62). Ixnplicit
differentiation then gives

0.6—

0.4—

l8—
l

(o

l

dye

(
2 + (p@2)5/2

&n 0.2— 1.43yT/hC ~~

d(pe +(p

("+ ~@')"
&ra

(65)

Note that since the right-hand side of (63) is positive,
@/T is always an increasing function of temperature. A
lengthy calculation gives

7CVF (52 + (p@2)5/2
&n

This is larger than the rigid-lattice value axxi = 1/mv~.
This enhancement will enhance the specific heat jump
(58) and reduce the coherence length (59).

FIG. 5. Dependence on the pseudogap of physical quan-
tities associated with mean-field theory of a single chain.
The plot shows the coherence length (o, the width of the
one-dimensional critical region ACED, and the inverse of the
specific heat jump AC. All quantities are normalized to
their rigid-lattice values. For Q ) 2.7T the coefficient b be-
comes negative and the transition will be first order (Sec. IV).
The large reduction of ACED below the rigid-lattice value of
0.8 means that a mean-field treatment of the single-chain
Ginzburg-Landau functional may be justified.
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AC (TRr, &

1.43pTI q T~ )
This simple argument gives the correct trend that as
the fluctuations increase, the enhancement of the specific
heat jump increases.

D. Width of the one-dimensional critical region

The width of the one-dimensional critical region is cal-
culated from Eq. (60), with the Ginzburg-Landau coef-
ficients in the presence of the pseudogap. It is shown in
Fig. 5, normalized to the rigid-lattice value LtiD ——0.8.
The large reduction is very important, because it means
that even for weak interchain coupling, it may be possi-
ble for condition (4) to be satisfied and for a mean-field
treatment of a single-chain functional, such as that used
in this section, to be justified.

VI. ESTIMATE OF THE PSEUDOGAP
IN Ko.sMOOs

Optical conductivity, magnetic susceptibility, and pho-
toemission experiments all suggest that near T~ ——183
K, there is a pseudogap in the density of states.

Optical conductivity. Sadovskii has calculated the
optical conductivity 0(~) for the model introduced in
Sec. Ii.s~ For small frequencies, 0 (u) is linear in u and has
a peak at about u 3'. The data in Refs. 22 and 24 then
imply @ 40 meV and g/TJ 2.5. On a less rigorous
level, @ can be estimated based on the analysis contained
in the inset of Fig. 4. If the single-chain mean-field tran-
sition temperature To ( 0.4TRL then vP TRz, . Using
the BCS relation (8) and the estimate A(0) 80 meV for
the zero-temperature gap &om the optical conductivity
gives @ 45 meV and g/TI 3.

Magnetic susceptibility. The data of Refs. 5 and 20 give
g(Ty )/g(300 K) 0.5. Assuming that y(300 K)
and using Fig. 3 gives @/TJ 2.4. Note that all of the
above three estimates for Q/TI are consistent with one
another and are all in the regime where the fourth-order
coefficent b is small (Fig. 4).

Photoemission. Recent high resolution photoemssion
ineasurements on Kp sMOOs and (TaSe4) 2I have
several puzzling features: (1) There is a suppression of
spectral weight over a large energy range (of the order of
200 meV for Ko sMoOs) near the Fermi energy. (2) The
spectrum is very weakly temperature dependent. The
suppression occurs even for T 2Tp. (3) At T~ the
spectrum does not just shift near E~, due to the opening
of the Peierls gap, but also at energies of order 0.5 eV
&om Ep.

These features cannot be explained using the model
presented in this paper. The photoemission data suggest
that the pseudogap is about @ 130 meV. Clearly this
estimate is inconsistent with the estimates (vP 40—50
meV) given above from the optical conductivity and mag-
netic susceptibility. Furthermore, in the model presented

here the pseudogap occurs only when
(~~ (T) )) v~/@, i.e.,

fairly close to Tp. The temperature dependence of the
Pauli spin susceptibility and the optical conductivity
suggest that the pseudogap disappears for T ) 2TI [in
contrast to (2) above). Dardel et al. 2s speculate that
the anomalous behavior that they observe may arise, be-
cause the photoemission intensity I(E) might be related
to the density of states p(E) by I(E) = Zp(E) and the
quasiparticle weight Z vanishes, due to Luttinger liquid
efFects. This suggestion has been examined critically by
Voit, who concludes that the photoemission data are
only quantitatively consistent with a Luttinger liquid pic-
ture if very strong long-range interactions are involved.
Kopietz, Meden, and Schonhammer have recently con-
sidered such models.

VII. CONCLUSIONS

In this paper, a simple model has been used to il-
lustrate some of the difficulties involved in constructing
&om microscopic theory a Ginzburg-Landau theory of
the CDW transition. The main results are (1) the large
thermal lattice motion near the transition temperature
produces a pseudogap in the density of states. (2) Per-
turbation theory diverges and gives unreliable results.
This is illustrated by showing that a predicted scal-
ing relation between the specific heat and the tempera-
ture derivative of the susceptibility does not hold. (3)
The pseudogap significantly alters the coefficients in the
Ginzburg-Landau &ee energy. The result is that one-
dimensional order parameter fluctuations are less impor-
tant, making a mean-field treatment of the single-chain
Ginzburg-Landau functional more reasonable.

This work raises a number of questions and opportu-
nities for future work. (a) The most important problem
is that there is still no microscopic theory that can make
reliable quantitative predictions about how dimension-
less ratios, such as 6(0)/k~Tp, AC/GATI, and (O, Tp/v~
depend on parameters such as v~, the electron-phonon
coupling A, TI and the interchain coupling. (b) Is the
change of the sign of the fourth-order coefIicient b of the
single-chain Ginzburg-Landau functional for g & 2.7TI
an important physical effect or merely a result of the
simplicity of the model considered here? (c) Calculation
of the contribution of the sliding CDW to the optical
conductivity in the presence of the short-range order as-
sociated with the pseudogap.
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Z
d z exp —F (81)

APPENDIX A: SCHULZ'S MODEL

2 2vy

J 7rT2 ' (A1)

For completeness an alternative microscopic model is
discussed. Schulz considered only thermal fluctuations
in the phase of the order parameter. He assumed that
the temperature was suKciently low that fluctuations in
the amplitude of the order parameter were not signif-
icant. (However, in real materials the amplitude ffuc-
tuations are important. si) Fluctuations along the chain
were treated exactly and the interchain interactions were
treated in the mean-field approximation. He derived a
free-energy functional of the form (5). The coefficients in
a tetragonal crystal (a = a„) are

0 1
H = dz 4~ z —iv~o.3 + —L z o.++ 4 z *o.

Bz 2

x@(z) + &(z)'
Avrv~

(82)

the partition function is given by

Z= dL z exp — dz
A7I vF )

8
x T exp — dv. dz4't z, ~ —ivan. q-

p OZ

+-2I&( ) ++&( )' -] ~(" ) I (
1

where Zp is the partition function in the absence of in-
teractions.

The phonon field in the Hamiltonian (17) is treated
classically. For the Hamiltonian,

7VF
T'6

2a
2J )

(A2)

(A3)

The goal is to get this expression into a form comparable
to (81), so the coefficients a, b, and c can be extracted.

The linked cluster or cumulant expansion can be used
to rewrite the time-ordered product in (83). In general,
if the Hamiltonian is separated according to

2v~
7r3T4 (A4)

H =Hp+Hg (84)

The coefficient A(T) vanishes at the three-dimensional
transition temperature,

t' ~ ) z
(S) = T exp — d7-Hi(~)

) p

(85)

i( Fi
7l j (A5)

where ()p denotes a thermal average with respect to Hp,
then the linked cluster theorem states that

Thus, the ratio A(0)/k~TsD is not a universal quantity.
The specific heat jump at the transition is

1 (A') 16vr TsD 24
QT3Da~ 2BT3D 7a2 7

(A6)

VF
(A7)

where pT = 27rT/3vFa is the normal state electronic
specific heat. The coherence length parallel to the chains
is

(~) = exp ((~)o,- ) —1 (86)

0
Hp RL = dz4t(z) —ivFo's 4'(z)—

OZ
(87)

where (S)p, „denotes the set of connected terms in the
diagrammatic expansion of S.

The important question is how to make the separation
(84)? A rigid-lattice treatinent of the phonons neglects
the eKect of the thermal lattice motion on the electronic
states. The Hamiltonian is separated according to

Equations (A6) and (A7) then give the ratios given in
Table I.

APPENDIX B: EVALUATION
OF THE GINZBURG-LANDAU COEFFICIENTS

HqRg= — dzC z L z o++L z*a 4'z . 88

The resulting Bee-energy functional is

FRL fd) = f dz + — T exp
~

—— dzd(z)
P(z)2 1 ( 1

AvrvF p E 2

x &4 zv o+4 z7
The Ginzburg-Landau free-energy functional (1) is re-

lated to the partition function Z, by the functional inte-
gral,

—H.c.
i) o,RL, conn

(89)
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r [ii] = J'a(„*')
( P

+— T exp
~

—— dzP(z) d7 4t (z, 7 )cr+
2 0

x@(z,~) —H.c.
~)

1 )

conn
(81o)

where the expectation value of an operator A is de6ned
by

Aviv
((A)) = exp( —vv')Tr A exp( —PIIo[v])

7r

(811)

with the Hamiltonian Ho,

where A(z) has been equated with P(z) in the functional
integral. Expanding to fourth order in P(z) gives the
rigid-lattice coefficients given by (9—11).i

To improve on this rigid-lattice treatment, we want
to expand relative to a Hamiltonian, which includes at
least some of the effects of lattice fluctuations. The rigid-
lattice expression (89) is modified in the following way:

is performed and the &ee energy (810) expanded to
fourth order in P. The result is

+[4] = ).a(q)4, 4,*

1 dvdv*
a(q) = + nT).

&n

dk

27r

x Tr o.+G(k ~ q, e„,v)o. G(k, e„,v) (815)

dods* „, d'A;

b(qi, q2, qs) = vrT) e
7r 2'

&n

xTr [o G(k + qii en, v)o'

xG(k+ qi + q2, e„,v)o.+G(k+ qi + q2

—qs, e„,v) o.+G(k, e„,v)], (816)

+— ) b(q„q„q,)P,
* P* P„P„+„„,(814)

q1,q2, q3

where the coefficients a(q) and b(qi, qz, qs) are given by

i9
Hofn] = f dz(@i(z) —iv~a~-

Bz

+ —g(v~i. +v'o ) %(z)) .
2

(812)

and the electronic Green's function G(k, e, v) is defined
in Eq. (34).

Expanding a(q) in powers of q gives the Ginzburg-
Landau coefficients a(T) and c(T):

It is now possible to evaluate analytically the &ee-energy
functional (810). The Fourier transform

(813)

a(q) = a(T)+ c(T)q +.
The fourth-order coefficient is b = b(0, 0, 0). The coef-
ficients a, b, and c in are given in terms of vP in Eqs.
(5O)-(52).
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