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Abstract
Objectives The aim of this study was to assess the effect of a deep learning (DL)–based reconstruction algorithm on late
gadolinium enhancement (LGE) image quality and to evaluate its influence on scar quantification.
Methods Sixty patients (46 ± 17 years, 50% male) with suspected or known cardiomyopathy underwent CMR. Short-axis LGE
images were reconstructed using the conventional reconstruction and a DL network (DLRecon) with tunable noise reduction
(NR) levels from 0 to 100%. Image quality of standard LGE images and DLRecon images with 75% NR was scored using a 5-
point scale (poor to excellent). In 30 patients with LGE, scar size was quantified using thresholding techniques with different
standard deviations (SD) above remote myocardium, and using full width at half maximum (FWHM) technique in images with
varying NR levels.
Results DLRecon images were of higher quality than standard LGE images (subjective quality score 3.3 ± 0.5 vs. 3.6 ± 0.7,
p < 0.001). Scar size increased with increasing NR levels using the SD methods. With 100% NR level, scar size increased 36%,
87%, and 138% using 2SD, 4SD, and 6SD quantification method, respectively, compared to standard LGE images (all p values
< 0.001). However, with the FWHM method, no differences in scar size were found (p = 0.06).
Conclusions LGE image quality improved significantly using a DL-based reconstruction algorithm. However, this algorithm has
an important impact on scar quantification depending onwhich quantification technique is used. The FWHMmethod is preferred
because of its independency of NR. Clinicians should be aware of this impact on scar quantification, as DL-based reconstruction
algorithms are being used.
Key Points
• The image quality based on (subjective) visual assessment and image sharpness of late gadolinium enhancement images
improved significantly using a deep learning–based reconstruction algorithm that aims to reconstruct high signal-to-noise
images using a denoising technique.

• Special care should be taken when scar size is quantified using thresholding techniques with different standard deviations
above remote myocardium because of the large impact of these advanced image enhancement algorithms.

• The full width at half maximum method is recommended to quantify scar size when deep learning algorithms based on noise
reduction are used, as this method is the least sensitive to the level of noise and showed the best agreement with visual late
gadolinium enhancement assessment.
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Abbreviations
2D 2-Dimensional
CMR Cardiovascular magnetic resonance imaging
CNR Contrast-to-noise ratio
DL Deep learning
DLRecon Deep learning–based reconstruction algorithm
FWHM Full width at half maximum
ICM Ischemic cardiomyopathy
LGE Late gadolinium enhancement
LV Left ventricle
MRI Magnetic resonance imaging
NEX Number of averages
NICM Non-ischemic cardiomyopathy
NR Noise reduction
ROI Region of interest
SA Short-axis
SD Standard deviation
SEM Standard error of the mean
SI Signal intensity
SNR Signal-to-noise ratio

Introduction

The presence of myocardial fibrosis is a common finding in
patients with both ischemic cardiomyopathy (ICM) and non-
ischemic cardiomyopathy (NICM) [1, 2]. Cardiovascular
magnetic resonance imaging (CMR) is the gold standard tech-
nique to visualize myocardial fibrosis by late gadolinium en-
hancement (LGE) imaging [3–6]. Determination of the pres-
ence and extent of LGE is of clinical importance as research
has shown its prognostic value in the prediction of adverse
cardiac events, including ventricular arrhythmias and sudden
cardiac death [7–9]. In addition to visual assessment for LGE
analysis, there are several threshold-based techniques to quan-
tify the amount of myocardial fibrosis [10]. These threshold-
based techniques are based on differences in signal intensity
(SI) between fibrotic myocardium and normal remote myo-
cardium [5]. In one of the techniques, the amount of
hyperenhancement is determined by using different SI thresh-
old values such as 2, 4, or 6 standard deviations (SD) above
remote, normal myocardium. Another quantification tech-
nique known as full width at half maximum (FWHM) as-
sumes a threshold value of half the maximum signal within
the scar. The preference for a quantification technique differs
per cardiac disease: the FWHM is frequently used for ICM
and the SD threshold technique often used for NICM [3, 5,
11].

Despite these semi-automatic techniques, large variations
in the extent of LGE between each quantification method still
remain, due to the variability in noise, resolution, and intensity
level of the LGE images and in patients (e.g., distribution
pattern and extent of myocardial scar) [3–5, 12, 13]. By

tackling one or more of these variabilities, the diagnostic ac-
curacy of CMR images may improve. This can be achieved by
obtaining images with high-resolution and high signal-to-
noise ratio (SNR). However, with standard breath-hold imag-
ing frequently used in CMR, SNR cannot be increased by
increasing the number of averages (NEX) due to limited time
[14]. Recently, there has been interest in the development and
application of deep learning (DL) to reconstruct, enhance, or
analyze medical images [4, 15–17]. Here, we investigated a
new DL reconstruction algorithm (DLRecon) that aims to re-
construct high SNR images while preserving image detail
using a denoising technique. The objective of this study was
to establish the effect of this DL-based magnetic resonance
imaging (MRI) reconstruction algorithm on LGE image qual-
ity and its influence on the quantification of myocardial scar in
patients with ICM and NICM.

Materials and methods

Study population

For this single-center observational study, we screened pa-
tients who were referred for CMR at the Erasmus Medical
Center, Rotterdam, the Netherlands, with proven or suspected
ICM or NICM between March 2019 and April 2019. A total
of 60 consecutive patients who underwent CMR including
LGE images in the context of clinical care were included.
No other in- or exclusion criteria were used. According to
the institutional review board, this study did not meet the
requirements of a study that is subject to the Medical
Research Involving Human Subjects Acts.

DL image reconstruction

The vendor-provided DLRecon prototype (GE Healthcare)
uses a feed-forward deep convolutional neural network
(CNN) that reconstructs images with higher SNR, reduced
truncation artifacts, and higher spatial resolution [18]. This
network architecture is a residual encoder, variants of which
have been demonstrated as effective for highly related tasks,
including image denoising, super resolution, and JPEG
deblocking [19]. The CNN is integrated inside the standard
reconstruction pipeline; accepts raw, unfiltered, complex-
valued input images, and desired noise reduction (NR) level;
and produces improved output images. The improved images
have a noise variance that is reduced by the requested NR
level, expressed as a percentage between 0 and 100% to ac-
commodate user preference. NR 100% corresponds to remov-
ing of all the predicted noise from the image. The network also
recognizes that Gibbs ringing occurs in the vicinity of sharp
edges and achieves de-ringing to improve image sharpness.
The result is an image with higher SNR and edge sharpness
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that is nearly free of truncation artifacts. The CNN contains
over 4.4 million trainable parameters in over 10,000 kernels. It
was trained with a supervised learning approach, using pairs
of images representing near-perfect and conventional MRI
images. The near-perfect training data consisted of high-
resolution images with minimal ringing and very low noise
levels. The conventional training data were synthesized from
near-perfect images using established methods to create lower
resolution versions with more truncation artifacts and with
higher noise levels. A diverse set of training images spanning
a broad range of image content were employed to enable gen-
eralizability of the CNN across all anatomies. Image augmen-
tations, including rotations and flips, intensity gradients, phase
manipulations, and additional Gaussian noise, were applied
for added robustness, resulting in a training database of 4
million unique image/augmentation combinations. The net-
work was trained with gradient backpropagation via the
ADAM optimizer. This DLRecon method is developed for
2-dimensional (2D) anatomical sequences and is compatible
with many standard sequences and options, including magni-
tude LGE short-axis (SA) views, long-axis views, fast single-
shot acquisition, and phase-sensitive inversion recovery
images.

CMR patient protocol

CMR examinations were performed on a 1.5T whole body clin-
ical MR system (SIGNA Artist, GE Healthcare) with a dedicat-
ed anterior array coil, electrocardiographic gating, and breath-
hold techniques. The imaging protocol consisted of balanced
steady-state free precession cine images and 2D LGE imaging.
LGE imaging was performed 10–20 min after intravenous ad-
ministration of a gadolinium-based contrast agent (0.15 to
0.2 mmol/kg; Gadovist, Bayer Healthcare), using a breath-
held 2D-segmented inversion recovery gradient echo pulse se-
quence with magnitude reconstruction. LGE images were ob-
tained in standard long-axis and SA views, with coverage from
base to apex. Typical scan parameters were slice thickness
8 mm, interslice gap 2 mm, TR/TE 6.5/3.0 ms, flip angle 25°,
ASSET 1.5, NEX 1, field of view 256–410 × 320–430 mm,
acquired matrix 200 × 192, and reconstructed to a pixel size of
1.3–2.1 × 1.1–1.5 mm. If necessary, the preset inversion time
was adjusted to null normal myocardium.

LGE images were reconstructed multiple times from the
same source data: once using the vendor standard reconstruc-
tion, then again using the vendor-supplied DLRecon proto-
type. For this study, LGE images were reconstructed with a
NR level of 25%, 50%, 75%, and 100%.

Phantom scan protocol

Static phantom scans were performed, with the application of
tunable NR levels of 25%, 50%, and 75%, to demonstrate the

relationship between different NR levels and improvement in
SNR. Scans were performed on the same 1.5TMR systemwith
a doped static phantom and 32-channel anterior array coil. A
2D-segmented inversion recovery gradient echo pulse sequence
with magnitude reconstruction was used, with an inversion
preparation time of 110 ms, emulated heart rate at 100 bpm,
and otherwise identical parameters as in the patient study. To
quantify NR levels, the data acquisition was repeated with mul-
tiple averages from 1 to 16 NEX. Mean SI and SD were mea-
sured by taking the average of three circularly drawn regions of
interest (ROI) outside the phantom, and SNRwas calculated by
the quotient of SI and SD, according to IEC standards [20].

CMR analysis

All 2D SA LGE images were analyzed to determine the effect
of DLRecon on image quality and LGE quantification. Image
quality and myocardial nulling were assessed on standard
LGE images and DLRecon images with 75% NR level.
These assessments were performed blinded and independently
in all 60 patients by two experienced imaging cardiologists
(A.H. and C.H.) and one experienced researcher (N.vdV.)
using a 5-point Likert scale (1 = poor, 2 = fair, 3 = good, 4 =
very good, 5 = excellent). Moreover, the visibility of artifacts
(1 = severe image artifacts, 2 = moderate to severe image arti-
facts, 3 = moderate image artifacts, 4 = mild image artifacts,
5 = no image artifacts) and the presence of hyperenhancement
(yes or no) was scored. Also, image sharpness, as a more
objectivemethod for image quality, was calculated in standard
LGE images as well as in the DLRecon images with NR levels
of 25%, 50%, 75%, and 100% using open-source software
ImageJ (National Institutes of Health). In each mid ventricular
SA slice with the least myocardial trabeculations, a single
profile was selected along the septal myocardium (Fig. 1).
This profile was copied between the standard LGE images
and the DLRecon images. Sharpness was calculated by taking
the inverse of the distance between 20 and 80% of the pixel
intensity range of the profile [21].

In addition, SNR and contrast-to-noise ratio (CNR) were
determined, as criteria for image quality, in patients with
hyperenhancement (n = 30). These measurements were per-
formed by drawing ROIs in remote myocardium,
hyperenhanced myocardium, and air signal outside the pa-
tient. SNR of the scar was measured as mean SI of the
hyperenhanced myocardium divided by SD of the air signal
outside the patient. CNR between scar and remote myocardi-
um was calculated as (mean SI of hyperenhanced myocardi-
um −mean SI of remote myocardium)/(1.5 × SD of the air
signal outside the patient) [5].

In the same subset of patients with hyperenhancement, ad-
ditional analyses were performedwith regard to LGE analysis.
Epicardial and endocardial contours (excluding papillary mus-
cles) of the left ventricle (LV) were manually drawn on each
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slice of the SA LGE images, using dedicated software (QMass
software version 8.1, Medis Medical Imaging Systems bv).
Subsequently, two regions of interest ROIs, one in
hyperenhanced myocardium and one in normal remote myo-
cardium, were drawn automatically in the SA slice where
hyperenhancement was visually most pronounced. After visu-
al inspection and manual adjustments if necessary, the con-
tours were copied between standard LGE images and
DLRecon images with NR levels of 25%, 50%, 75%, and
100%. Thereafter, hyperenhanced myocardium was automat-
ically quantified as percentage of the LV using different quan-
tification techniques: the thresholding technique with 2SD,
4SD, and 6SD above remote myocardium and the FWHM
method [10]. For the manual technique, hyperenhanced myo-
cardium was drawn by visual assessment of each SA slice.

Statistical analysis

All continuous data were tested for normality before analysis
using the Kolmogorov-Smirnov test or Shapiro-Wilk test, de-
pending on the number of patients, and were expressed as
mean ± SD or median (interquartile range (IQR)), as appro-
priate. Categorical variables were presented as number (%).
Wilcoxon signed-rank tests were used for the comparison of
differences in image quality, severity of artifacts, myocardial
nulling, and for the comparison of extent of LGE between
different quantification techniques. Intraclass correlations

(ICC) were used to evaluate the agreement between observers
and were interpreted as follows: < 0.2 = poor, 0.21–0.40 =
fair, 0.41–0.60 = moderate, 0.61–0.80 = good, and 0.81–
1.00 = excellent. Paired t tests were used for the comparison
of the image sharpness. For each quantification method, the
amount of LGE as percentage of the LV between the standard
LGE images and the images with different NR levels was
compared by performing the Friedman’s test. If a significant
difference was found, a Wilcoxon signed-rank test with
Bonferroni correction was performed to determine the exact
difference between the standard LGE images and images with
varying NR levels. All analyses were two-tailed; after correc-
tion for multiple testing, a p < 0.0125 was considered as sta-
tistically significant. Statistical analyses were performed using
SPSS (version 21, IBM SPSS Statistics, IBM corporation).

Results

Phantom scans

Figure 2 illustrates the relationship between SNR and NEX
without and with DLRecon with NR levels of 25%, 50%, and
75%. As depicted in Fig. 2, here is a square root relationship
between SNR and NEX. The SNR of an image with 50% or
75% NR level (and NEX 1) is comparable with an image with
4 NEX or 16 NEX without NR, respectively. Consequently,

Fig. 1 Assessment of image sharpness. Example of an endocardial border
sharpness measurement in both standard late gadolinium enhancement
(LGE) images and DLRecon images with 25%, 50%, 75%, and 100%
noise reduction levels (top row). For each profile (example bottom left),
image sharpness was calculated by taking the inverse of the distance (d)

between 20 and 80% of the total intensity range (r) of the profile. Image
sharpness (1/cm) of all 60 patients is depicted in the box plots (bottom
right). The deep learning–based reconstruction algorithm resulted in a
significantly increased image sharpness. *Significantly different com-
pared to standard LGE; p < 0.001)
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with a 50% or 75% NR factor, the SNR increased by a factor
1.8 and 3.0 compared to the standard LGE images.

Image quality of patient scans

Baseline patient and CMR characteristics are presented in
Table 1. Mean age of the study group was 46 ± 17 years and
50% were males.

Assessment of image quality, artifacts, and myocardial
nulling of both standard LGE and DLRecon images with
75% NR level was performed in all patients. Agreement be-
tween the three observers was moderate to good for image
quality (ICC 0.52 for standard LGE images and 0.62 for
DLRecon images with 75% NR level), moderate for visibility
of artifacts (ICC 0.58 and 0.59, respectively), and fair to mod-
erate for myocardial nulling (ICC 0.39 and 0.44, respectively).
Image quality improved significantly by applying the
DLRecon method, with an increase in mean image quality
from 3.2 ± 0.5 to 3.7 ± 0.6 (p < 0.001, Fig. 3). Nevertheless,
the visibility of artifacts, especially wrapping and ghosting
artifacts, was emphasized when DLRecon was used (3.7 ±
0.5 vs. 3.4 ± 0.7, p < 0.001). Furthermore, in DLRecon im-
ages, no improvement in distinction between suppressed and
hyperenhanced myocardiumwas achieved (3.3 ± 0.5 vs. 3.3 ±
0.6, p = 0.30). No difference in the presence and visual extent
of LGE was found between standard and DLRecon images.

In addition to a significant increase in image quality, the
image sharpness between standard LGE images and DLRecon
images with 25%, 50%, 75%, and 100% also increased sig-
nificantly (0.46 ± 0.11 vs. 0.58 ± 0.18 vs. 0.59 ± 0.17 vs. 0.59
± 0.17 1/cm, respectively, all p values < 0.001; Fig. 1). In
patients with hyperenhancement (n = 30), both SNRscar and
CNRscar-remote increased with 121% and 127%, respectively
(both p < 0.001). Examples of LGE images with and without
DLRecon are shown in Fig. 4.

Myocardial scar size quantification

Hyperenhancement was observed in 30 patients; 73% had a non-
ischemic distribution pattern. Figure 5 shows an example of the
different quantification methods in a standard SA LGE image
and in the same SA reconstructedwith 75%NR level. There was
a significant increase in percentage of hyperenhancement of the
LV with incremental NR levels when the SD thresholding tech-
niques were used (Fig. 6 and supplementary Table 1). The extent
of hyperenhancement increased by 36%, 87%, and 138%,

Table 1 Baseline patient and CMR characteristics

All patients (n = 60)

Demographic characteristics
Age (years) 46 ± 17
Male gender 30 (50%)
Height (in cm) 175 ± 10
Weight (in kg) 83 ± 17
BSA (in m2) 2.0 ± 0.2

CMR diagnosis
Normal 20 (33%)
Hypertrophic cardiomyopathy 13 (22%)
Dilated cardiomyopathy 7 (12%)
Other cardiomyopathy 11 (18%)
Myocardial infarction 8 (13%)
Myocardial ischemia without infarction 1 (2%)

CMR parameters
LV end-diastolic volume (ml) 175 (146–199)
LV end-systolic volume (ml) 77 (61–96)
LV stroke volume (ml) 93 ± 22
LV ejection fraction (%) 56 (51–61)

Late gadolinium enhancement Patients with LGE (n = 30)
Ischemic LGE distribution pattern 8 (27%)
Non-ischemic LGE distribution pattern 22 (73%)
Percentage LGE of LV (manual) 6 (5–11)

Continuous data presented as mean + SD or as median with IQR.
Categorical data presented as number (%)

CMR cardiovascular magnetic resonance imaging, LGE late gadolinium
enhancement, LV left ventricle

Fig. 2 Relationship between signal-to-noise ratio and the number of av-
erages stratified according to different DLRecon noise reduction levels.
Square root relationship between signal-to-noise ratio and number of
averages in standard late gadolinium enhancement (LGE) images and in
deep-learning-reconstructed (DLRecon) images with noise reduction
(NR) levels of 25%, 50%, and 75%

Fig. 3 Assessment of image quality. Assessment of the image quality in
percentages of both standard late gadolinium enhancement and deep
learning–reconstructed (DLRecon) images with a 75% noise reduction
(NR) level by three observers in all 60 consecutive patients
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respectively, using 2SD, 4SD, and 6SD quantification methods
between standard LGE images and images with 100% NR level
(all p values < 0.001). This difference was not found using the
FWHMmethod, where myocardial scar size was independent of
NR levels (Fr iedman ’s p = 0.06) . The extent of
hyperenhancement was 9% larger using images with 100%
NR level compared to standard LGE images; however, this
was not significant (p = 0.053).When the different quantification
techniques with the application of DLRecon were compared to
manual LGE quantification, the best agreement was found with
the FWHMmethod (p = 0.49). The SIs and the different thresh-
olds are depicted in supplementary Table 2.

The same results were found with regard to increase in
extent of LGE between standard LGE and DLRecon images
when patients were stratified according to ICM orNICM (sup-
plementary Fig. 1). In ICM patients, manual measurement of
scar size in standard LGE images was consistent with 6SD
technique (p = 0.48) and the FWHM resulted in a smaller in-
farct size (p = 0.017). In NICM patients, the manual measure-
ment was most comparable to the FWHMmethod in standard
LGE images (p = 0.41).

Discussion

In this study, we evaluated the impact of a DL-based recon-
struction algorithm on LGE image quality and its effect on the
quantification of myocardial fibrosis was assessed. Our main

findings can be summarized as follows: (1) image quality by
visual scoring improved significantly and consistently by ap-
plying DLRecon with a NR level of 75%; (2) in static phan-
tom scans, DLRecon with NR levels of 50% and 75% in-
creased SNR by a factor 1.8 and 3.0 compared to the standard
LGE images; (3) both image sharpness and SNR and CNR
increased significantly in clinical acquired images; and (4)
DLRecon has a considerable impact on LGE extent using
SD threshold techniques.

Image quality and DLRecon

As it is known, image quality can be improved by increasing
the NEX, providing high SNR images. However, this also in-
creases scan duration. Therefore, several studies have recently
investigated the influence of applying various DL-based noise
and artifact reduction techniques on different types of se-
quences, for the purpose of retaining or improving MRI image
quality and reducing scanning time within various radiological
disciplines [14–17, 22, 23]. In addition to the comparison of
different denoisingmethods, one of these studies also evaluated
its effect on image quality between images with varying NEX
values and DL-based-reconstructed images with diverse NR
levels. It was shown that the reconstructed images with shorter
acquisition time yielded equal or even better image quality than
the images which were acquired with a higher NEX. In addi-
tion, small, precise anatomical structures remained clearly vis-
ible in the reconstructed images [14]. The same effect

Fig. 4 LGE image example with and without applying a deep learning–
based reconstruction algorithm. Examples of late gadolinium enhance-
ment (LGE) images with the standard and deep learning–based recon-
struction algorithm using different noise reduction levels in a patient
without hyperenhancement (images a–e), in a patient with

hyperenhancement with a non-ischemic distribution pattern (images f–
j), and in a patient with hyperenhancement due to ischemic cardiomyop-
athy (CMP) (images k–o). The new reconstruction algorithm resulted into
a higher signal-to-noise ratio with increasing noise reduction levels, re-
duction in truncation artifacts, and sharper edges
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concerning SNR was achieved with the performed phantom
scans in our study. This demonstrates that DL-based denoising
techniques are effective in improving image quality, while a
short acquisition time is retained. Two other studies demon-
strated a retained or increased SNR when a DL-based NR tech-
nique was used, even while artifacts were also removed in one
of the studies [17, 22]. The study of Hauptmann et al showed
superior image quality and no statistically significant differ-
ences in functional ventricular measurements of undersampled
real-time MRI images, compared to the reference standard,
cardiac-gated, breath-hold techniques. These findings can
strongly benefit patients, as image quality improves, while be-
ing able to reduce examination duration by omitting sequences
with breath-holds. Our study confirmed the SNR findings with
phantom scans, since SNR of our images improved by a factor
1.8 or 3.0 by applying DLRecon NR levels of 50% or 75%,
respectively. However, ghosting andwrapping artifacts became
more pronounced when LGE images were reconstructed with
higher NR levels. Nevertheless, our overall image quality im-
proved significantly by applying DLRecon.

Effect of DLRecon on LGE extent

Our study confirmed, just like previous studies, that the extent
of LGE in patients with ICM and NICM varied widely de-
pending on the quantification technique that was used [3, 5,
24]. The use of a wrongly chosen quantification technique
may lead to either under- or overestimation of the amount of
myocardial fibrosis [3, 11].

Although research has been done to establish the most opti-
mal LGE quantification method, no consensus has yet been
reached [3, 5, 10, 12, 24–27]. In summary, these studies dem-
onstrated that the most suitable quantification method differs per
LGE distribution pattern, where the distribution pattern in pa-
tients with ICM generally corresponds to a particular coronary
artery territory in contrast to less defined, diffuse, multifocal and
patchy LGE areas in patients with NICM [12, 28]. Our study
showed that LGE could be best quantified with the FWHM
method as this method is most closely resembles the manual
method. However, the SDmethod is still regularly used as quan-
tification method, especially in patients with NICM [29–31].

Fig. 5 LGE quantification using different threshold-based techniques.
Example of the different quantification methods in a standard short-axis
(SA) late gadolinium enhancement (LGE) image and in the same SA
reconstructed with a 75% noise reduction (NR) level in a patient with
non-ischemic cardiomyopathy. The threshold technique by standard

deviation (SD) led to an increase in hyperenhancement area in the LGE
image reconstructed with 75% NR level compared to standard LGE im-
age. There was no difference in the hyperenhanced area in the full width
at half maximum (FWHM) method
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It is already known that the use of denoising techniques
can influence image quality and with that probably also
the scar visualization on LGE images, but to our knowl-
edge, the magnitude of this effect is not known [32].
Assessing the presence and accurate determination of the
amount of myocardial fibrosis is of clinical importance,
since multiple studies have shown that the presence and
extent of LGE is of prognostic value in the prediction of
all-cause mortality, cardiovascular mortality, ventricular
arrhythmia, and SCD [7–9]. For example, studies have
shown a relation between the extent of LGE and the risk
of SCD in HCM [33–35]. Therefore, several clinicians
consider the extent of fibrosis when recommending an
implantable cardioverter-defibrillator for primary preven-
tion, especially in those at intermediate risk of SCD. Our
study showed that the amount of myocardial fibrosis al-
most doubled if LGE images were reconstructed with the
highest NR level, depending on the used quantification
method. A plausible explanation for this is that the SD-
based method depends on the SI and SD of the signal of
the ROI in the remote myocardium. Our data showed that
the SD of the signal of the ROI in the remote myocardium
is reduced due to NR with DLRecon, resulting in lower SI
thresholds. This may lead to an increase in LGE extent
and possible over- or mistreatment of patients. Clinicians
should be aware of this risk. Besides, quantification of the
extent of LGE using SD threshold technique is highly
affected by the amount of noise/SNR; this can be influ-
enced by a lot of other factors like static magnetic field

strength, radiofrequency receive coil array, excitation flip
angle, and receive bandwidth. However, the FWHM
method does not depend on the SD of SI of the remote
ROI but uses a threshold based on the SI within the re-
mote and hyperenhanced area, making that technique less
dependent on the different NR levels.

This study should function as a warning not to implement
cutoffs from other studies based on SD threshold technique
without careful consideration of these limitations. With regard
to the DLRecon algorithm adapting the cutoffs for the extent
of LGE to the NR level used is a possibility using the data
provided in the manuscript. However, despite the possible
disadvantage of FWHM method in especially NICM due to
the diffuse fibrosis, we recommend using this method instead
of SD threshold methods. The FWHM method is the least
sensitive to the level of noise and showed the best agreement
with visual late gadolinium enhancement assessment.

Study limitations

Our study has several limitations: first, image quality assess-
ment could not be assessed in a blinded way as it was clear for
the reviewers which image was the standard LGE image and
which image was reconstructed with 75%NR level. Secondly,
this study was a single-center study with a relatively small
sample size, especially the number of patients with ICM.
There was a trend to an increase in the extent of
hyperenhancement using the FWHM method with DLRecon
over conventional reconstruction; however, this was not sig-
nificant (9%, p = 0.053). The FWHM method may prove sta-
tistically different with additional subjects, but is likely to
remain less sensitive than the standard deviation method.
Finally, we did not investigate the possibility of altering scan
parameters for improved image quality. Higher resolution pro-
tocols with adequate CNR or faster protocols with comparable
resolution may be possible and further improve image quality.

Conclusions

Myocardial LGE image quality improved significantly using a
DL-based reconstruction algorithm. However, this NR algo-
rithm has important impact on scar size quantification depend-
ing on which quantification technique was used. Clinicians
and researchers should be aware of this large impact on scar
quantification because advanced image reconstruction or oth-
er image enhancement algorithms are becoming more and
more available and this can have major clinical consequences.
Our study recommends the FWHM method with application
of NR levels up to 100%when DL algorithms are used, as this
method is the least sensitive to the level of noise and showed
the best agreement with visual assessment of LGE.

Fig. 6 Scar size quantification. Quantification of hyperenhancement as
percentage of left ventricle (LV) using different techniques: thresholding
by standard deviation (SD) above remote myocardium, full width at half
maximum (FWHM) andmanual. Scar size was quantified in standard late
gadolinium enhancement (LGE) images and in deep learning-
reconstructed images (DLRecon) images stratified according to noise
reduction (NR) level (from 25 to 100%). Data presented as mean with
standard error of the mean. *Significantly different compared to standard
LGE; p < 0.0125 considered as statistically significant
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