73 research outputs found
Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials : in vitro study
Although many reports concluded that polishing of glass ionomers is crucial for smoother surface and limiting the adhesion of cariogenic bacteria, there is no specific surface treatment protocol recommended. A novel material in the same category was released recently claimed to have surface smoothness comparable to resin composite and bacterial adhesion less than other types of glass ionomers. In this study, different polishing systems were tested with three glass ionomers one of them is the novel material to find the most appropriate polishing protocol. Objectives: To evaluate and compare the surface roughness and bacterial adhesion to resin modified glass ionomer, bioactive ionic resin and conventional glass ionomer restorative materials after different polishing protocols in vitro. The materials tested includes resin modified glass ionomer, bioactive ionic resin, and conventional glass ionomer. The polishing protocols were divided into four groups: group 1 = (Mylar matrix strips, Control), group 2 = (one-step, PoGo), group 3 = (two-step, Prisma Gloss) and group 4 = (three-step, Sof-Lex). From each material, eleven cylindrical specimens were prepared for each group according to the manufacturers? instructions. The surface roughness for all specimens was measured using atomic force microscope in tapping mode. the same specimens were subjected to bacterial adhesion testing after being coated with artificial saliva. Data were analyzed with two-way analysis of variance followed by Post hoc multiple comparisons. The highest Ra and S. mutans adhesion values were recorded for all materials in two-step group. The lowest Ra and S. mutans adhesion values were seen in one-step and three step groups. One-step polishing system was more effective and may be preferable for polishing of the three studied glass ionomer-based materials compared to two-step and three-step systems
Extender Supplementation with Glutathione (GSH) and Taurine Improves In Vitro Sperm Quality and Antioxidant Status of New Zealand Rabbits during Chilled Storage for up to 72 hours
This study assessed the influence of supplementing the rabbit semen extender with various concentrations of glutathione (GSH) and taurine at 24, 48, and 72 h postchilling at 5 degrees C. Semen samples were collected from 20 New Zealand bucks, and ejaculates with standard color, motility (>85%), about 0.5 mL volume, and similar to 400 x 10(6)/mL concentration were used and diluted with extenders supplemented with 0.5, 1, and 2 mM of GSH and 1, 5, and 10 mM of taurine and chilled at 5 degrees C. Nonsupplemented samples were used as a control. Sperm's progressive motility, acrosome reaction, and extracellular oxidative stress biomarkers such as MDA contents and GPx, SOD, and CAT concentrations and intracellular transcriptomic levels of SOD and CAT genes were assessed. GSH and taurine supplementation improved the sperm's kinetics by reducing cooling-associated stress, which was ascertained by lowering MDA concentration and increasing SOD, CAT, and GPx concentrations (P < 0.05). Increasing the levels of antioxidant enzymes in the extender was due to the increasing mRNA copies of the SOD and CAT genes (P < 0.05). Furthermore, GSH and taurine maintained the fructose levels in the extender and lowered the GPT levels, which implies sperm membrane stability is maintained through GSH and taurine supplementation. GSH and taurine supplementation to the extender had protective influences on the in vitro rabbit semen quality during chilled storage for up to 72 h, which were remarkable with increasing supplementation dose and cooling time at 5?
Metabolomic profile, anti-trypanosomal potential and molecular docking studies of <i>Thunbergia grandifolia</i>
Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90âÎŒg/mL within 72âh. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05â2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Comparative Metabolic Study of <i>Tamarindus indica</i> L.âs Various Organs Based on GC/MS Analysis, <i>In Silico</i> and <i>In Vitro</i> Anti-Inflammatory and Wound Healing Activities
The chemical composition of the n-hexane extract of Tamarindus indicaâs various organsâbark, leaves, seeds, and fruits (TIB, TIL, TIS, TIF)âwas investigated using gas chromatography-mass spectrometry (GC/MS) analysis. A total of 113 metabolites were identified, accounting for 93.07, 83.17, 84.05, and 85.08 % of the total identified components in TIB, TIL, TIS, and TIF, respectively. Lupeol was the most predominant component in TIB and TIL, accounting for 23.61 and 22.78%, respectively. However, n-Docosanoic acid (10.49%) and methyl tricosanoate (7.09%) were present in a high percentage in TIS. However, α-terpinyl acetate (7.36%) and α-muurolene (7.52%) were the major components of TIF n-hexane extract. By applying a principal component analysis (PCA) and hierarchal cluster analysis (HCA) to GC/MS-based metabolites, a clear differentiation of Tamarindus indica organs was achieved. The anti-inflammatory activity was evaluated in vitro on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In addition, the wound healing potential for the n-hexane extract of various plant organs was assessed using the in-vitro wound scratch assay using Human Skin Fibroblast cells. The tested extracts showed considerable anti-inflammatory and wound-healing activities. At a concentration of 10 ”g/mL, TIL showed the highest nitric oxide (NO) inhibition by 53.97 ± 5.89%. Regarding the wound healing potential, after 24 h, TIB, TIL, TIS, and TIF n-hexane extracts at 10 g/mL reduced the wound width to 1.09 ± 0.04, 1.12 ± 0.18, 1.09 ± 0.28, and 1.41 ± 0.35 mm, respectively, as compared to the control cells (1.37 ± 0.15 mm). These findings showed that the n-hexane extract of T. indica enhanced wound healing by promoting fibroblast migration. Additionally, a docking study was conducted to assess the major identified phytoconstituentsâ affinity for binding to glycogen synthase kinase 3-ÎČ (GSK3-ÎČ), matrix metalloproteinases-8 (MMP-8), and nitric oxide synthase (iNOS). Lupeol showed the most favourable binding affinity to GSK3-ÎČ and iNOS, equal to â12.5 and â13.7 Kcal/mol, respectively, while methyl tricosanoate showed the highest binding affinity with MMP-8 equal to â13.1 Kcal/mol. Accordingly, the n-hexane extract of T. indicaâs various organs can be considered a good candidate for the management of wound healing and inflammatory conditions
Chemical composition, seasonal variation and antiaging activities of essential oil from Callistemon subulatus leaves growing in Egypt
AbstractCallistemon is an aromatic genus of flowering plants belonging to family Myrtaceae. The essential oils of C. subulatus leaves were collected in four seasons and analyzed using GC/MS. The oils demonstrated monoterpenes as the predominant class. Eucalyptol was the main component in all seasons; summer (66.87%), autumn (58.33%), winter (46.74%) and spring (44.63%), followed by α-pinene; spring (31.41%), winter (28.69%), summer (26.34%) and autumn (24.68%). Winter oil, the highest yield (0.53âmL/100g), was further investigated for its inhibitory activity against enzymes associated with ageing; elastase and acetylcholinesterase. It remarkably inhibited elastase and acetylcholinesterase with IC50 values of 1.05 and 0.20â”g/ml, respectively. A molecular docking study was conducted for the major oil components on the active sites of target enzymes. Eucalyptol revealed the best binding affinity for both enzymes. C. subualtus oil could be used as supplement for management of ageing disorders like skin wrinkles and dementia
The Antioxidant and Enzyme Inhibitory Potential of <i>n</i>-Hexane-Extracted Oils Obtained from Three Egyptian Cultivars of the Golden Dewdrop <i>Duranta erecta</i> Linn. Supported by Their GC-MS Metabolome Analysis and Docking Studies
Duranta erecta Linn. has a longstanding history for use in folk remedy for several disorders. Its hydroalcoholic extract has been investigated intensely in the treatment of many ailments, but to date very few data are presented to explain the pharmacological use of its oil. In this study, the chemical profiles of the leaf oils extracted from three Egyptian Duranta erecta cultivars, namely âGreenâ, âGolden edgeâ, and âVariegataâ are traced using GC-MS analysis. D. erecta âGreenâ showed predominance of vitamin E (22.7%) and thunbergol (15%) whereas D. erecta âGolden edgeâ and âVariegataâ contained tetratetracontane as a major component in their oils. The highest phenolic and flavonoid contents, displayed as gallic acid and rutin equivalents per gram oil, respectively, were observed in the âGolden edgeâ and âVariegataâ cultivars, which was reflected by their strong DPPH and ABTS scavenging activities as well as the highest reducing power in both CUPRAC and FRAP assays. D. erecta âGreenâ displayed better metal chelating potential, which may be attributed to its content of vitamin E. All cultivars showed similar enzyme inhibitory profiles. The best inhibition of α-glucosidase and α-amylase was observed by D. erecta âGreenâ. In silico studies of the major constituents docked on the active sites of the target enzymes NADPH oxidase, amylase, glucosidase, butyrylcholinesterase, and tyrosinase revealed high binding scores, which justified the biological activities of the tested oils
Curcumin-Injected Musca domestica Larval Hemolymph: Cecropin Upregulation and Potential Anticancer Effect
Over recent decades, much attention has been given to imply the natural products in cancer therapy alone or in combination with other established procedures. Insects have a rich history in traditional medicine across the globe, which holds promise for the future of natural product drug discovery. Cecropins, peptides produced by insects, are components of a defense system against infections and are well known to exert antimicrobial and antitumor capabilities. The present study aimed to investigate, for the first time, the role of curcumin in enhancing the anticancer effect of Musca domestica larval hemolymph. Third larval instars of M. domestica were injected with curcumin and the hemolymph was picked at 4, 8, and 24 h post-curcumin injection. M. domestica cecropin A (MdCecA) was evaluated in control and injected larval hemolymphs. The cytotoxicity on breast cancer cell lines (MCF-7) and normal Vero cells was assessed to be comparable to control larval hemolymph. Curcumin-injected larval hemolymphs exhibited significant cytotoxicity with respect to the uninjected ones against MCF-7; however, Vero cells showed no cytotoxicity. The IC50 was 106 ± 2.9 and 388 ± 9.2 μg/mL for the hemolymphs of injected larvae at 4 and 8 h, respectively, while the control larval hemolymph revealed the IC50 of >500 μg/mL. For mechanistic anticancer evaluation, concentrations of 30, 60, and 100 μg/mL of curcumin-injected larval hemolymphs were examined. A significant G2/M cell cycle arrest was observed, confirming the anti-proliferative properties of hemolymphs over the tested concentrations. The MdCecA transcripts were significantly (p < 0.05) upregulated at 4 and 8 h post-injection, while a significant downregulation was observed after 24 h. Cecropin quantification by LC–MS revealed that MdCecA peptides have the highest expression in the hemolymph of the treated larvae at 8 h relative to the control group. The upregulation of cecropin expression at mRNA and protein levels may be attributed to the curcumin stimulation and linked to the increased cytotoxicity toward the cancer cell line. In conclusion, the results suggest that the apoptotic and anti-proliferative effects of M. domestica hemolymph on MCF-7 cells following the curcumin injection can be used as a natural candidate in future pharmaceutical industries
Recommended from our members
DFT and molecular simulation validation of the binding activity of PDEÎŽ inhibitors for repression of oncogenic k-Ras.
The development of effective drugs targeting the K-Ras oncogene product is a significant focus in anticancer drug development. Despite the lack of successful Ras signaling inhibitors, recent research has identified PDEÎŽ, a KRAS transporter, as a potential target for inhibiting the oncogenic KRAS signaling pathway. This study aims to investigate the interactions between eight K-Ras inhibitors (deltarazine, deltaflexin 1 and 2, and its analogues) and PDEÎŽ to understand their binding modes. The research will utilize computational techniques such as density functional theory (DFT) and molecular electrostatic surface potential (MESP), molecular docking, binding site analyses, molecular dynamic (MD) simulations, electronic structure computations, and predictions of the binding free energy. Molecular dynamic simulations (MD) will be used to predict the binding conformations and pharmacophoric features in the active site of PDEÎŽ for the examined structures. The binding free energies determined using the MMPB(GB)SA method will be compared with the observed potency values of the tested compounds. This computational approach aims to enhance understanding of the PDEÎŽ selective mechanism, which could contribute to the development of novel selective inhibitors for K-Ras signaling
Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases
- âŠ