399 research outputs found

    The s-process nucleosynthesis : Impact of the uncertainties in the nuclear physics determined by monte carlo variations

    Get PDF
    We investigated the impact of uncertainties in neutron-capture and weak reactions (on heavy elements) on the s-process nucleosynthesis in low-mass stars and massive stars using a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations that include newly evaluated temperature-dependent upper and lower limits for the individual reaction rates. We found β-decay rate uncertainties affect only a few nuclei near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in the neutron capture rates. We suggest a list of uncertain rates as candidates for improved measurement by future experiments.Peer reviewe

    Impacts of nuclear-physics uncertainty in stellar temperatures on the s-process nucleosynthesis

    Get PDF
    N. Nishimura, G. Cescutti, R. Hirschi, T. Rauscher, J. Den Hartogh, and A. St J. Murphy, 'Impacts of nuclear-physics uncertainty in stellar temperatures on the s-process nucleosynthesis', in Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016). Niigata, Japan. June 19-24, 2016. ISBN: 978-4-89027-118-4. DOI: http://dx.doi.org/10.7566/JPSCP.14.020903 © 2017 The Physical Society of Japan.We evaluated the uncertainty relevant to s-process nucleosynthesis using a Monte-Carlo centred approach. We are based on a realistic and general prescription of temperature dependent uncertainty for the reactions. We considered massive stars for the weak s-process and AGB stars for the main s-process. We found that the adopted uncertainty for (n,γ\gamma) rates, tens of per cent on average, affect the production of s-process nuclei along the β\beta-stability line, while for β\beta-decay, for which contributions from excited states enhances the uncertainty, has the strongest impact on branching points

    First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constaints on its origin

    Get PDF
    International audienceWe have performed the first observation of the CO(3-2) spectral line in the atmosphere of Saturn with the James Clerk Maxwell Telescope. We have used a transport model of the atmosphere of Saturn to constrain the origin of the observed CO. The CO line is best-fit when the CO is located at pressures less than (15± 2) mbar with a mixing ratio of (2.5±0.6)×10-8 implying an external origin. By modelling the transport in Saturn's atmosphere, we find that a cometary impact origin with an impact 200-350 years ago is more likely than continuous deposition by interplanetary dust particles (IDP) or local sources (rings/satellites). This result would confirm that comet impacts are relatively frequent and efficient providers of CO to the atmospheres of the outer planets. However, a diffuse and/or local source cannot be rejected, because we did not account for photochemistry of oxygen compounds. Finally, we have derived an upper limit of 1×10-9 on the tropospheric CO mixing ratio

    First results on Martian carbon monoxide from Herschel/HIFI observations

    Full text link
    We report on the initial analysis of Herschel/HIFI carbon monoxide (CO) observations of the Martian atmosphere performed between 11 and 16 April 2010. We selected the (7-6) rotational transitions of the isotopes ^{13}CO at 771 GHz and C^{18}O at 768 GHz in order to retrieve the mean vertical profile of temperature and the mean volume mixing ratio of carbon monoxide. The derived temperature profile agrees within less than 5 K with general circulation model (GCM) predictions up to an altitude of 45 km, however, show about 12-15 K lower values at 60 km. The CO mixing ratio was determined as 980 \pm 150 ppm, in agreement with the 900 ppm derived from Herschel/SPIRE observations in November 2009.Comment: Accepted for publication in Astronomy and Astrophysics (special issue on HIFI first results); minor changes to match published versio

    Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel space observatory

    Get PDF
    HCl and HF are expected to be the main reservoirs of fluorine and chlorine wherever hydrogen is predominantly molecular. They are found to be strongly depleted in dense molecular clouds, suggesting freeze-out onto grains in such cold environments. We can then expect that HCl and HF were also the major carriers of Cl and F in the gas and icy phases of the outer solar nebula, and were incorporated into comets. We aimed to measure the HCl and HF abundances in cometary ices as they can provide insights on the halogen chemistry in the early solar nebula. We searched for the J(1-0) lines of HCl and HF at 626 and 1232 GHz, respectively, using the HIFI instrument on board the Herschel Space Observatory. HCl was searched for in comets 103P/Hartley 2 and C/2009 P1 (Garradd), whereas observations of HF were conducted in comet C/2009 P1. In addition, observations of H2_2O and H218_2^{18}O lines were performed in C/2009 P1 to measure the H2_2O production rate. Three lines of CH3_3OH were serendipitously observed in the HCl receiver setting. HCl is not detected, whereas a marginal (3.6-σ\sigma) detection of HF is obtained. The upper limits for the HCl abundance relative to water are 0.011% and 0.022%, for 103P and C/2009 P1, respectively, showing that HCl is depleted with respect to the solar Cl/O abundance by a factor more than 63+6^{+6}_{-3} in 103P, where the error is related to the uncertainty in the chlorine solar abundance. The marginal HF detection obtained in C/2009 P1 corresponds to an HF abundance relative to water of (1.8±\pm0.5) ×\times 104^{-4}, which is approximately consistent with a solar photospheric F/O abundance. The observed depletion of HCl suggests that HCl was not the main reservoir of chlorine in the regions of the solar nebula where these comets formed. HF was possibly the main fluorine compound in the gas phase of the outer solar nebula.Comment: Accepted for publication in Astronomy & Astrophysic

    "TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects

    Full text link
    Trans-Neptunian objects (TNO) represent the leftovers of the formation of the Solar System. Their physical properties provide constraints to the models of formation and evolution of the various dynamical classes of objects in the outer Solar System. Based on a sample of 19 classical TNOs we determine radiometric sizes, geometric albedos and beaming parameters. Our sample is composed of both dynamically hot and cold classicals. We study the correlations of diameter and albedo of these two subsamples with each other and with orbital parameters, spectral slopes and colors. We have done three-band photometric observations with Herschel/PACS and we use a consistent method for data reduction and aperture photometry of this sample to obtain monochromatic flux densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS flux densities at 23.68 and 71.42 \mu m when available, and we present new Spitzer flux densities of eight targets. We derive diameters and albedos with the near-Earth asteroid thermal model (NEATM). As auxiliary data we use reexamined absolute visual magnitudes from the literature and data bases, part of which have been obtained by ground based programs in support of our Herschel key program. We have determined for the first time radiometric sizes and albedos of eight classical TNOs, and refined previous size and albedo estimates or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347 Salacia indicate that they are among the 10 largest TNOs known. Our new results confirm the recent findings that there are very diverse albedos among the classical TNOs and that cold classicals possess a high average albedo (0.17 +/- 0.04). Diameters of classical TNOs strongly correlate with orbital inclination in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd)

    Get PDF
    The D/H ratio in cometary water is believed to be an important indicator of the conditions under which icy planetesimals formed and can provide clues to the contribution of comets to the delivery of water and other volatiles to Earth. Available measurements suggest that there is isotopic diversity in the comet population. The Herschel Space Observatory revealed an ocean-like ratio in the Jupiter-family comet 103P/Hartley 2, whereas most values measured in Oort-cloud comets are twice as high as the ocean D/H ratio. We present here a new measurement of the D/H ratio in the water of an Oort-cloud comet. HDO, H_2O, and H_2^18O lines were observed with high signal-to-noise ratio in comet C/2009 P1 (Garradd) using the Herschel HIFI instrument. Spectral maps of two water lines were obtained to constrain the water excitation. The D/H ratio derived from the measured H_2^16O and HDO production rates is 2.06+/-0.22 X 10**-4. This result shows that the D/H in the water of Oort-cloud comets is not as high as previously thought, at least for a fraction of the population, hence the paradigm of a single, archetypal D/H ratio for all Oort-cloud comets is no longer tenable. Nevertheless, the value measured in C/2009 P1 (Garradd) is significantly higher than the Earth's ocean value of 1.558 X 10**-4. The measured H_2^16O/H_2^18O ratio of 523+/-32 is, however, consistent with the terrestrial value.Comment: 6 pages with 4 figures and 1 table. Accepted for publication as a Letter in Astronomy & Astrophysic

    The roles of charge exchange and dissociation in spreading Saturn's neutral clouds

    Full text link
    Neutrals sourced directly from Enceladus's plumes are initially confined to a dense neutral torus in Enceladus's orbit around Saturn. This neutral torus is redistributed by charge exchange, impact/photodissociation, and neutral-neutral collisions to produce Saturn's neutral clouds. Here we consider the former processes in greater detail than in previous studies. In the case of dissociation, models have assumed that OH is produced with a single speed of 1 km/s, whereas laboratory measurements suggest a range of speeds between 1 and 1.6 km/s. We show that the high-speed case increases dissociation's range of influence from 9 to 15 Rs. For charge exchange, we present a new modeling approach, where the ions are followed within a neutral background, whereas neutral cloud models are conventionally constructed from the neutrals' point of view. This approach allows us to comment on the significance of the ions' gyrophase at the moment charge exchange occurs. Accounting for gyrophase: (1) has no consequence on the H2O cloud; (2) doubles the local density of OH at the orbit of Enceladus; and (3) decreases the oxygen densities at Enceladus's orbit by less than 10%. Finally, we consider velocity-dependent, as well as species-dependent cross sections and find that the oxygen cloud produced from charge exchange is spread out more than H2O, whereas the OH cloud is the most confined.Comment: Accepted to the Journal of Geophysical Research, 49 pages, 10 figure

    Gas and dust in Comet 2P/Encke observed in the visual and submillimeter wavelength ranges

    No full text
    In November 2003 Comet 2P/Encke was observed simultaneously with the 10-m Heinrich–Hertz Submillimeter Telescope on Mount Graham, Arizona, USA, and the 2-m optical telescope on Mount Rozhen, Bulgaria. Simultaneous radio observations of the 4–3 and 3–2 rotational transitions of HCN and the 0–0 transition of the CN violet band system provide a three-dimensional view on the comet. The observations are consistent with outgassing from the source region I with location and pole position of Comet Encke taken from [14]. The outflow speed is 1.2 km. There is some evidence for another possible parent for CN besides HCN. The visual dust coma of Comet Encke is nearly spherical with a diameter of about 1000 km and a slight extension into Comet Encke’s fan. The polarization of the observed NH₂ transition at 662 nm is 7% at a phase angle of 94.5°, close to the value for two-atomic molecules. At this phase angle and a wavelength of 642 nm the polarization of Comet Encke’s dust is greater than 30%, i.e., exceeds the value for so-called dusty comets
    corecore