736 research outputs found

    A new model for preclinical testing of dermal substitutes for human skin reconstruction

    Get PDF
    Background: Currently, acellular dermal substitutes used for skin reconstruction are usually covered with split-thickness skin grafts. The goal of this study was to develop an animal model in which such dermal substitutes can be tested under standardized conditions using a bioengineered dermo-epidermal skin graft for coverage. Methods: Bioengineered grafts consisting of collagen type I hydrogels with incorporated human fibroblasts and human keratinocytes seeded on these gels were produced. Two different dermal substitutes, namely Matriderm®, and an acellular collagen type I hydrogel, were applied onto full-thickness skin wounds created on the back of immuno-incompetent rats. As control, no dermal substitute was used. As coverage for the dermal substitutes either the bioengineered grafts were used, or, as controls, human split-thickness skin or neonatal rat epidermis were used. Grafts were excised 21days post-transplantation. Histology and immunofluorescence was performed to investigate survival, epidermis formation, and vascularization of the grafts. Results: The bioengineered grafts survived on all tested dermal substitutes. Epidermis formation and vascularization were comparable to the controls. Conclusion: We could successfully use human bioengineered grafts to test different dermal substitutes. This novel model can be used to investigate newly designed dermal substitutes in detail and in a standardized wa

    Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    Get PDF
    Purpose: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. Methods: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thickness skin wounds on the back of immuno-incompetent rats were covered with skin grafts with (1) amniocytes in the dermis, (2) fibroblasts in the dermis, or, (3) acellular dermis. Grafts were excised 7 and 21days post transplantation. Histology and immunofluorescence were performed to investigate epidermis formation, stratification, and expression of established skin markers. Results: The epidermis of skin grafts engineered with amniocytes showed near-normal anatomy, a continuous basal lamina, and a stratum corneum. Expression patterns for keratin 15, keratin 16, and Ki67 were similar to grafts with fibroblasts; keratin 1 expression was not yet fully established in all suprabasal cell layers, expression of keratin 19 was increased and not only restricted to the basal cell layer as seen in grafts with fibroblasts. In grafts with acellular dermis, keratinocytes did not survive. Conclusion: Dermo-epidermal skin grafts with amniocytes show near-normal physiological behavior suggesting that amniocytes substitute fibroblast function to support the essential cross-talk between mesenchyme and epithelia needed for epidermal stratification. This novel finding has considerable implications regarding tissue engineerin

    Matriderm® 1mm versus Integra® Single Layer 1.3mm for one-step closure of full thickness skin defects: a comparative experimental study in rats

    Get PDF
    Purpose: Dermal templates, such as Matriderm® and Integra®, are widely used in plastic and reconstructive surgery, often as two-step procedures. A recent development is the application of thin dermal templates covered with split thickness skin grafts in one-step procedures. In this experimental study, we compare the two thin matrices Matriderm® 1mm and Integra® Single Layer in a one-step procedure with particular focus on neodermis formation. Methods: Matriderm® 1mm and Integra® Dermal Regeneration Template—Single Layer (1.3mm) were compared in a rat model. In three groups of five animals each, a full thickness wound was covered with (a) Matriderm® 1mm and neonatal rat epidermis, (b) Integra® Single Layer and neonatal rat epidermis, or, (c) neonatal rat epidermis only (control). Histological sections 2weeks post transplantation were analyzed with regard to take of template and epidermis, neodermal thickness, collagen deposition, vascularization, and inflammatory response. Results: Take of both templates was complete in all animals. The Matriderm®-based neodermis was thinner but showed a higher cell density than the Integra®-based neodermis. The other parameters were similar in both matrices. Conclusion: The two templates demonstrate a comparable biological behavior early after transplantation. The only difference was found regarding neodermal thickness, probably resulting from faster degradation of Matriderm®. These preliminary data suggest that both dermal templates appear similarly suitable for transplantation in a one-step procedur

    Skingineering I: engineering porcine dermo-epidermal skin analogues for autologous transplantation in a large animal model

    Get PDF
    Background: Extended full thickness skin defects still represent a considerable therapeutic challenge as ideal strategies for definitive autologous coverage are still not available. Tissue engineering of whole skin represents an equally attractive and ambitious novel approach. We have recently shown that laboratory-grown human skin analogues with near normal skin anatomy can be successfully transplanted on immuno-incompetent rats. The goal of the present study was to engineer autologous porcine skin grafts for transplantation in a large animal model (pig study=intended preclinical study). Materials and methods: Skin biopsies were taken from the pig's abdomen. Epidermal keratinocytes and dermal fibroblasts were isolated and then expanded on culture dishes. Subsequently, highly concentrated collagen hydrogels and collagen/fibrin hydrogels respectively, both containing dermal fibroblasts, were prepared. Fibroblast survival, proliferation, and morphology were monitored using fluorescent labelling and laser scanning confocal microscopy. Finally, keratinocytes were seeded onto this dermal construct and allowed to proliferate. The resulting in vitro generated porcine skin substitutes were analysed by H&E staining and immunofluorescence. Results: Dermal fibroblast proliferation and survival in pure collagen hydrogels was poor. Also, the cells were mainly round-shaped and they did not develop 3D-networks. In collagen/fibrin hydrogels, dermal fibroblast survival was significantly higher. The cells proliferated well, were spindle-shaped, and formed 3D-networks. When these latter dermal constructs were seeded with keratinocytes, a multilayered and partly stratified epidermis readily developed. Conclusion: This study provides compelling evidence that pig cell-derived skin analogues with near normal skin anatomy can be engineered in vitro. These tissue-engineered skin substitutes are needed to develop a large animal model to establish standardized autologous transplantation procedures for those studies that must be conducted before "skingineering” can eventually be clinically applie

    Skingineering II: transplantation of large-scale laboratory-grown skin analogues in a new pig model

    Get PDF
    Background: Tissue engineering of skin with near-normal anatomy is an intriguing novel strategy to attack the still unsolved problem of how to ideally cover massive full-thickness skin defects. After successful production of large, pig cell-derived skin analogues, we now aim at developing an appropriate large animal model for transplantation studies. Materials and methods: In four adult Swiss pigs, full-thickness skin defects, measuring 7.5×7.5cm, were surgically created and then shielded against the surrounding skin by a new, self-designed silicone chamber. In two animals each, Integra dermal regeneration templates or cultured autologous skin analogues, respectively, were applied onto the wound bed. A sophisticated shock-absorbing dressing was applied for the ensuing 3weeks. Results were documented photographically and histologically. Results: All animals survived uneventfully. Integra healed in perfectly, while the dermo-epidermal skin analogues showed complete take of the dermal compartment but spots of missing epidermis. The chamber proved effective in precluding ("false positive”) healing from the wound edges and the special dressing efficiently kept the operation site intact and clean for the planned 3weeks. Conclusion: We present a novel and valid pig model permitting both transplantation of large autologous, laboratory-engineered skin analogues and also keeping the site of intervention undisturbed for at least three postoperative weeks. Hence, the model will be used for experiments testing whether such large skin analogues can restore near-normal skin, particularly in the long term. If so, clinical application can be envisione

    Crystal and magnetic structure of LaTiO3 : evidence for non-degenerate t2gt_{2g}-orbitals

    Full text link
    The crystal and magnetic structure of LaTiO3 ~ has been studied by x-ray and neutron diffraction techniques using nearly stoichiometric samples. We find a strong structural anomaly near the antiferromagnetic ordering, TN_N=146 K. In addition, the octahedra in LaTiO3 exhibit an intrinsic distortion which implies a splitting of the t2g-levels. Our results indicate that LaTiO3 should be considered as a Jahn-Teller system where the structural distortion and the resulting level splitting are enhanced by the magnetic ordering.Comment: 4 pages 5 figure

    Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    Get PDF
    The reaction ppppω pp\to pp\bf \omega was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of 93MeV93 MeV (pbeam=2950MeV/cp_{beam}=2950 MeV/c). Using the total cross section of (9.0±0.7±1.1)μb(9.0\pm 0.7 \pm1.1) \mu b for the reaction ppppω pp\to pp\omega determined here and existing data for the reaction ppppϕpp\to pp\bf \phi, the ratio Rϕ/ω=σϕ/σω\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the ω\omega production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for ω\omega production to published distributions for ϕ\phi production at 83MeV83 MeV shows that the data are consistent with an identical production mechanism for both vector mesons

    Systematic study of the pp -> pp omega reaction

    Full text link
    A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    corecore