167 research outputs found

    Mach 6 experimental and theoretical stability and performance of a cruciform missile at angles of attack up to 65 degrees

    Get PDF
    An experimental and theoretical investigation of the longitudinal and lateral-directional stability and control of an axisymmetric cruciform-finned missile has been conducted at Mach 6. The angle-of-attack range extended from 20 to 65 deg to encompass maximum lift. Longitudinal stability, performance, and trim could be accurately predicted with the fins at a fin roll angle of 0 deg but not when the fins were at a fin roll angle of 45 deg. At this roll angle, windward fin choking occurred at angles of attack above 50 deg and reduced the effectiveness of the fins and caused pitch-up

    Development of Silica-Immobilized Vaccines for Improving Thermo-Tolerance and Shelf-Life

    Get PDF
    Introduction. It is estimated that 50% of vaccines produced annu- ally are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions that maintain this structure. Since 90% of vaccines require a temperature- controlled supply chain, it is necessary to create a cold chain system to minimize vaccine waste. We have developed a more sustainable technology via the adsorption of Invasion Plasmid Antigen D (IpaD) onto mesoporous silica gels, improving the thermal stability of pro- tein-based therapeutics. Methods.xThe solution depletion method using UV-Vis was uti- lized to study the adsorption of IpaD onto silica gels. The silica-IpaD complex is heated above the denaturing temperature of the protein and then the IpaD is removed using N,N-Dimethyldodecylamine N-oxide (LDAO) and their secondary structure is tested using cir- cular dichroism (CD). Results. Pore diameter, pore volume and surface area were charac- terized for seven different silica gels. Silica gels designated as 6389, 6378, and 6375 had an adsorption percentage above 95% at pore volumes of 2.2, 2.8 and 3.8 cm3 mg-1, respectively. CD analyses con- firmed that the adsorbed IpaD after the heat treatment displayed a similar “W” shape CD signal as the native IpaD, indicating the con- servation of α-helices. In contrast, the unprotected IpaD after being exposed to high temperature shows a flat CD signal, demonstrating the loss of secondary structure. Conclusion. We have successfully increased the thermo-tolerance for IpaD using mesoporous silica and continue to further optimize mesoporous silica’s physiochemical properties to improve adsorption and desorption yields

    Interference, reduced action, and trajectories

    Get PDF
    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission. A companion paper to "Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment", quant-ph/0605121. Keywords: interference, nonlocality, trajectory representation, entanglement, dwell time, determinis

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    Spawning Habitat Unsuitability: An Impediment to Cisco Rehabilitation in Lake Michigan?

    Full text link
    The cisco Coregonus artedi was one of the most important native prey fishes in Lake Michigan and in the other four Laurentian Great Lakes. Most of the cisco spawning in Lake Michigan was believed to have occurred in Green Bay. The cisco population in Lake Michigan collapsed during the 1950s, and the collapse was attributed in part to habitat degradation within Green Bay. Winter water quality surveys of lower Green Bay during the 1950s and 1960s indicated that the bottom dissolved oxygen (DO) concentration was less than 2 mg/L throughout much of the lower bay, and most cisco eggs would not successfully hatch at such low DO concentrations. To determine present‐day spawning habitat suitability in lower Green Bay, we compared cisco egg survival in lower Green Bay with survival at a reference site (St. Marys River, Michigan–Ontario) during 2009. We also conducted winter water quality surveys in lower Green Bay and the St. Marys River during 2009 and 2010. Cisco egg survival in lower Green Bay averaged 65.3%, which was remarkably similar to and not significantly different from the mean at the St. Marys River site (64.0%). Moreover, the lowest bottom DO concentrations recorded during the winter surveys were 11.2 mg/L in lower Green Bay and 12.7 mg/L in the St. Marys River. These relatively high DO concentrations would not be expected to have any negative effect on cisco egg survival. We conclude that winter water quality conditions in lower Green Bay were suitable for successful hatching of cisco eggs and that water quality during the egg incubation period did not represent an impediment to cisco rehabilitation in Lake Michigan. Our approach to determining spawning habitat suitability for coregonids would be applicable to other aquatic systems.Received May 14, 2011; accepted July 6, 2011Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142025/1/nafm0905.pd

    Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells

    Get PDF
    Eukaryotic cells are large enough to detect signals and then orient to them by differentiating the signal strength across the length and breadth of the cell. Amoebae, fibroblasts, neutrophils and growth cones all behave in this way. Little is known however about cell motion and searching behavior in the absence of a signal. Is individual cell motion best characterized as a random walk? Do individual cells have a search strategy when they are beyond the range of the signal they would otherwise move toward? Here we ask if single, isolated, Dictyostelium and Polysphondylium amoebae bias their motion in the absence of external cues. We placed single well-isolated Dictyostelium and Polysphondylium cells on a nutrient-free agar surface and followed them at 10 sec intervals for ~10 hr, then analyzed their motion with respect to velocity, turning angle, persistence length, and persistence time, comparing the results to the expectation for a variety of different types of random motion. We find that amoeboid behavior is well described by a special kind of random motion: Amoebae show a long persistence time (~10 min) beyond which they start to lose their direction; they move forward in a zig-zag manner; and they make turns every 1-2 min on average. They bias their motion by remembering the last turn and turning away from it. Interpreting the motion as consisting of runs and turns, the duration of a run and the amplitude of a turn are both found to be exponentially distributed. We show that this behavior greatly improves their chances of finding a target relative to performing a random walk. We believe that other eukaryotic cells may employ a strategy similar to Dictyostelium when seeking conditions or signal sources not yet within range of their detection system.Comment: 15 pages, 11 figures, accepted for publication in PLOS On

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure
    corecore