1,405 research outputs found

    A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    Get PDF
    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location

    Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells.

    Get PDF
    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity at a given illumination energy dose. A powerful data analysis technique applied to the WFMP-FLIM data sets allows to optimize the estimation accuracy of physical parameters at very low fluorescence signal levels approaching the lower bound theoretical limit. We demonstrate the efficiency of WFMP-FLIM by presenting two independent and relevant long-term experiments in cell biology: 1) FRET analysis of simultaneously recorded donor and acceptor fluorescence in living HeLa cells and 2) tracking of mitochondrial transport combined with fluorescence lifetime analysis in neuronal processes

    Ionized Ultraviolet and Soft-X-ray Absorptions in the Low Redshift Active Galactic Nucleus PG1126-041

    Get PDF
    We present here the analysis of ultraviolet spectra from IUE and an X-ray spectrum from ROSAT PSPC observations of the X-ray weak, far-infrared loud AGN, PG 1126-041 (Mrk 1298). The first UV spectra taken in June 1992, simultaneously with ROSAT, show strong absorption lines of NV, CIV and SiIV, extending over a velocity range from -1000 to -5000 km/s with respect to the corresponding line centre. Our analysis shows that the Broad Emission Line Region (BELR) is, at least partially, covered by the material causing these absorption lines. In the IUE spectrum taken in Jan. 1995, the continuum was a factor of two brighter and the UV absorption lines are found to be considerably weaker than in 1992, but only little variation in the emission line fluxes is found. With UV spectral indices of A_{uv} \simeq 1.82 and 1.46 for the 1992 and 1995 data, the far UV spectrum is steep. Based on the emission line ratios and the broad band spectral energy distribution, we argue that the steepness of the UV spectrum is unlikely to be due to reddening. The soft X-ray emission in the ROSAT band is weak. A simple power-law model yields a very poor fit with a UV-to-X-ray spectral index A_{uvx}=2.32. Highly ionized (warm) absorption is suggested by the ROSAT data. After correcting for a warm absorber, the optical to X-ray spectral slope is close to the average of A{uvx}\simeq 1.67 for radio quiet quasars.Comment: 8 pages, 9 postscript figures. Mon. Not. Roy. Astr. Soc., accepte

    The Recruitment Niche Predicts Plant Community Assembly Across a Hydrological Gradient Along Plowed and Undisturbed Transects in a Former Agricultural Wetland

    Get PDF
    Seedling emergence in plant communities depends on the composition in the soil seed bank, in combination with species-specific responses to the environment. It is generally assumed that this juvenile transition, known as the recruitment niche, is a crucial filter that determines species’ distributions and plant community assemblies. The relative importance of this filter, however, has been widely debated. Empirical descriptions of the recruitment niche are scarce, as most field studies focus on environmental effects at later life stages. In this study, we examine the importance of the recruitment niche for predicting plant communities across a hydrological gradient in a disturbed and undisturbed area in Lake Schmiechen, Baden-Württemberg, Germany. We combine a seed bank experiment, measuring germination in water basins under standardized conditions and different water levels, with field observations of plant communities along a hydrological gradient in plowed and undisturbed transects in a former agricultural wetland. We find that hydrology consistently predicted plant community composition in both the germination experiment and in the field. The hydrological recruitment niches measured in the seed bank experiment correlated with the hydrological niche in both the plowed and undisturbed area, with slightly stronger correlation in the plowed area. We explain the latter by the fact that the seed bank experiment most closely resembles the plowed area, whereas succession and competitive interactions become more important in the undisturbed area. Our results support the view that the recruitment niche is an important driver of species composition, in both the plowed and undisturbed area. Recognizing the recruitment niche and the response of seeds within a seed bank to environmental gradients and anthropogenic disturbance is necessary to understand and predict future plant community composition

    Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence

    Get PDF
    A new scheme for infrared generation without population inversion between subbands in quantum-well and quantum-dot lasers is presented and documented by detailed calculations. The scheme is based on the simultaneous generation at three frequencies: optical lasing at the two interband transitions which take place simultaneously, in the same active region, and serve as the coherent drive for the IR field. This mechanism for frequency down-conversion does not rely upon any ad hoc assumptions of long-lived coherences in the semiconductor active medium. And it should work efficiently at room temperature with injection current pumping. For optimized waveguide and cavity parameters, the intrinsic efficiency of the down-conversion process can reach the limiting quantum value corresponding to one infrared photon per one optical photon. Due to the parametric nature of IR generation, the proposed inversionless scheme is especially promising for long-wavelength (far- infrared) operation.Comment: 4 pages, 1 Postscript figure, Revtex style. Replacement corrects a printing error in the authors fiel

    VLT and ACS observations of RDCS J1252.9-2927: dynamical structure and galaxy populations in a massive cluster at z=1.237

    Get PDF
    We present results from an extensive spectroscopic survey, carried out with VLT FORS, and from an extensive multiwavelength imaging data set from the HST Advanced Camera for Surveys and ground based facilities, of the cluster of galaxies RDCS J1252.9-2927. We have spectroscopically confirmed 38 cluster members in the redshift range 1.22 < z < 1.25. A cluster median redshift of z=1.237 and a rest-frame velocity dispersion of 747^{+74}_{-84} km/s are obtained. Using the 38 confirmed redshifts, we were able to resolve, for the first time at z > 1, kinematic structure. The velocity distribution, which is not Gaussian at the 95% confidence level, is consistent with two groups that are also responsible for the projected east-west elongation of the cluster. The groups are composed of 26 and 12 galaxies with velocity dispersions of 486^{+47}_{-85} km/s and 426^{+57}_{-105} km/s, respectively. The elongation is also seen in the intracluster gas and the dark matter distribution. This leads us to conclude that RDCS J1252.9-2927 has not yet reached a final virial state. We extend the analysis of the color-magnitude diagram of spectroscopic members to more than 1 Mpc from the cluster center. The scatter and slope of non-[OII]-emitting cluster members in the near-IR red sequence is similar to that seen in clusters at lower redshift. Furthermore, most of the galaxies with luminosities greater than ~ K_s*+1.5 do not show any [OII], indicating that these more luminous, redder galaxies have stopped forming stars earlier than the fainter, bluer galaxies. Our observations provide detailed dynamical and spectrophotometric information on galaxies in this exceptional high-redshift cluster, delivering an in-depth view of structure formation at this epoch only 5 Gyr after the Big Bang.Comment: 29 pages. 16 figures. ApJ accepted. Tables 2,3 and 5, figure 1 and the full figure 5 will be available in the paper and electronic editions from ApJ. v2: minor corrections to the abstract and text to match the Journal's versio
    • …
    corecore