701 research outputs found

    Perturbation theory vs. simulation for tadpole improvement factors in pure gauge theories

    Full text link
    We calculate the mean link in Landau gauge for Wilson and improved SU(3) anisotropic gauge actions, using two loop perturbation theory and Monte Carlo simulation employing an accelerated Langevin algorithm. Twisted boundary conditions are employed, with a twist in all four lattice directions considerably improving the (Fourier accelerated) convergence to an improved lattice Landau gauge. Two loop perturbation theory is seen to predict the mean link extremely well even into the region of commonly simulated gauge couplings and so can be used remove the need for numerical tuning of self-consistent tadpole improvement factors. A three loop perturbative coefficient is inferred from the simulations and is found to be small. We show that finite size effects are small and argue likewise for (lattice) Gribov copies and double Dirac sheets.Comment: 13 pages of revtex

    Real and imaginary chemical potential in 2-color QCD

    Full text link
    In this paper we study the finite temperature SU(2) gauge theory with staggered fermions for non-zero imaginary and real chemical potential. The method of analytical continuation of Monte Carlo results from imaginary to real chemical potential is tested by comparison with simulations performed {\em directly} for real chemical potential. We discuss the applicability of the method in the different regions of the phase diagram in the temperature -- imaginary chemical potential plane.Comment: 15 pages, 7 figures; a few comments added; version published on Phys. Rev.

    Extreme differences in 87Sr/86Sr between Samoan lavas and the magmatic olivines they host: Evidence for highly heterogeneous 87Sr/86Sr in the magmatic plumbing system sourcing a single lava

    Get PDF
    .Investigations of mantle heterogeneity in ocean island basalts (OIB) frequently compare heavy radiogenic isotopes (i.e. 87Sr/86Sr), often measured in whole rock powders, with 3He/4He and δ18O, commonly measured in olivines. However, the 87Sr/86Sr in the olivines, which is dominated by Sr in melt inclusions, may not be in equilibrium with the 87Sr/86Sr in the whole rock. Here we present new 87Sr/86Sr measurements made on Samoan magmatic olivines, where multiple olivine crystals are aggregated for a single isotopic measurement. The olivines host abundant melt inclusions, and yielded relatively large quantities of Sr (13.0 to 100.6 ng) in 19 to 185 mg aliquots of fresh olivine, yielding high Srsample/Srblank ratios (≥ 427). These new data on olivines show that samples can exhibit significant 87Sr/86Sr disequilibrium: in one extreme sample, where the basaltic whole rock 87Sr/86Sr (0.708901) is higher than several different aliquots of aggregate magmatic olivines (0.707385 to 0.707773), the whole rock-olivine 87Sr/86Sr disequilibrium is > 1590 ppm. The 87Sr/86Sr disequilibrium observed between whole rocks and bulk olivines relates to the isotopic disequilibrium between whole rocks and the average 87Sr/86Sr of the population of melt inclusions hosted in the olivines. Therefore, a population of olivines in a Samoan lava must have crystallized from (and trapped melts of) a different 87Sr/86Sr composition than the final erupted lava hosting the olivines. A primary question is how melts with different 87Sr/86Sr can exist in the same magmatic plumbing system and contribute heterogeneous 87Sr/86Sr to a lava and the magmatic olivines it hosts. We explore potential mechanisms for generating heterogeneous melts in magma chambers. The reliance, in part, of chemical geodynamic models of the relationships between isotopic systems measured in whole rocks (87Sr/86Sr) and systems measured in olivines (3He/4He and δ18O) means that whole rock-olivine Sr-isotopic disequilibrium will be important for evaluating relationship among these key isotopic tracer systems. Moving forward, it will be important to evaluate whether whole rock-olivine Sr-isotopic disequilibrium is a pervasive issue in OIB globally

    Perennial Filter Strips Reduce Nitrate Levels in Soil and Shallow Groundwater after Grassland-to-Cropland Conversion

    Get PDF
    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3–N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3–N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20% PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3–N concentration from 2005 to 2008. The results indicated significant increases in NO3–N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion

    Unitarized Chiral Perturbation Theory in a finite volume: scalar meson sector

    Get PDF
    We develop a scheme for the extraction of the properties of the scalar mesons f0(600), f0(980), and a0(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multi-channel scattering.Comment: 15 pages, 17 figure

    Quadriceps volumes are reduced in people with patellofemoral joint osteoarthritis

    Get PDF
    Objectives: This study aimed to (1) compare the volumes of vastus medialis (VM), vastus lateralis (VL), vastus intermedius and rectus femoris and the ratio of VM/VL volumes between asymptomatic controls and patellofemoral joint osteoarthritis (PFJ OA) participants; and (2) assess the relationships between cross-sectional area (CSA) and volumes of the VM and VL in individuals with and without PFJ OA. Methods: Twenty-two participants with PFJ OA and 11 controls aged ≥40 years were recruited from the community and practitioner referrals. Muscle volumes of individual quadriceps components were measured from thigh magnetic resonance (MR) images. The CSA of the VM and lateralis were measured at 10 equally distributed levels (femoral condyles to lesser femoral trochanter). Results: PFJ OA individuals had smaller normalized VM (mean difference 0.90 cm ·kg , α = 0.011), VL (1.50 cm ·kg , α = 0.012) and rectus femoris (0.71 cm ·kg , α = 0.009) volumes than controls. No differences in the VM/VL ratio were observed. The CSA at the third level (controls) and fourth level (PFJ OA) above the femoral condyles best predicted VM volume, whereas the VL volume was best predicted by the CSA at the seventh level (controls) and sixth level (PFJ OA) above the femoral condyles. Conclusion: Reduced quadriceps muscle volume was a feature of PFJ OA. Muscle volume could be predicted from CSA measurements at specific levels in PFJ OA patients and controls

    The DNDN, πΣc\pi \Sigma_c interaction in finite volume and the Λc(2595)\Lambda_c(2595) resonance

    Full text link
    In this work the interaction of the coupled channels DNDN and πΣc\pi \Sigma_c in an SU(4) extrapolation of the chiral unitary theory, where the Λc(2595)\Lambda_c(2595) resonance appears as dynamically generated from that interaction, is extended to produce results in finite volume. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the phase shifts in the infinite volume from the lattice results is solved. We observe that it is possible to obtain accurate πΣc\pi \Sigma_c phase shifts and the position of the Λc(2595)\Lambda_c(2595) resonance, but it requires the explicit consideration of the two coupled channels. We also observe that some of the energy levels in the box are attached to the closed DNDN channel, such that their use to induce the πΣc\pi \Sigma_c phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.

    Search for Monopoles Above the 15-Foot Bubble Chamber

    Get PDF
    Magnetic monopoles having energies less than about 40 TeV will be slowed to their terminal velocity by the earth's atmosphere. They may then be gathered by the fringing magnetic field of the 15-foot bubble chamber. We propose placing detectors of Lexan and nuclear emulsion at convenient locations above and below the bubble chamber. Such a systom would be sensitive to monopole masses between 10 GeV and 100 TeV and to monopole charges between {approx}0.7 and 10 hc/2e. The experiment would require the construction of a special light roof and would run for 5 weeks during a time when the bubble chamber is filled with air and not in use for other experiments. This study would lower the existing limit on in-flight detection of monopoles (at the earth's surface) by a factor of 20

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    Topological Susceptibility on Dynamical Staggered Fermion Configurations

    Get PDF
    The topological susceptibility is one of the few physical quantities that directly measure the properties of the QCD vacuum. Chiral perturbation theory predicts that in the small quark mass limit the topological susceptibility depends quadratically on the pion mass, approaching zero in the chiral limit. Lattice calculations have difficulty reproducing this behavior. In this paper we study the topological susceptibility on dynamical staggered fermion configurations. Our results indicate that the lattice spacing has to be small, around a~0.1fm for thin link staggered fermion actions to show the expected chiral behavior. Our preliminary result indicates that fat link fermions, on the other hand, reproduce the theoretical expectations even on lattices with a~0.17fm. We argue that this is due to the improved flavor symmetry of fat link fermionic actions.Comment: 16 pages, 4 figure
    • …
    corecore