72 research outputs found
Micronuclei to detect in vivo chemotherapy damage in a p53 mutated solid tumour
Apoptosis induction and micronuclei formation were compared following cytotoxic treatments in two rat glioma differing in p53 integrity. In vitro, micronuclei emergence but not apoptosis was linked to the p53 mutated status. In vivo, micronuclei assays were more sensitive to evaluate DNA damage induced by chemotherapy in a p53-mutated solid tumour.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Qualitative and quantitative evaluation of in vivo SD-OCT measurement of rat brain
OCT has been demonstrated as an efficient imaging modality in various biomedical and clinical applications. However, there is a missing link with respect to the source of contrast between OCT and other modern imaging modalities, no quantitative comparison has been demonstrated between them, yet. We evaluated, to our knowledge, for the first time in vivo OCT measurement of rat brain with our previously proposed forward imaging method by both qualitatively and quantitatively correlating OCT with the corresponding T1-weighted
and T2-weighted magnetic resonance images, fiber density map (FDM), and two types of histology staining (cresyl violet and acetylcholinesterase AchE), respectively. Brain anatomical structures were identified and compared across OCT, MRI and histology imaging modalities.
Noticeable resemblances corresponding to certain anatomical structures were found between OCT and other image profiles. Correlation was quantitatively assessed by estimating correlation coefficient (R) and mutual information (MI). Results show that the 1-D OCT measurements in regards to the intensity profile and estimated attenuation factor, do not have profound linear
correlation with the other image modalities suggested from correlation coefficient estimation. However, findings in mutual information analysis demonstrate that there are markedly high MI values in OCT-MRI signals
Relationship Between Sonic Hedgehog Protein, Brain-Derived Neurotrophic Factor and Oxidative Stress in Autism Spectrum Disorders
The etiology of autism spectrum disorders (ASD) is not well known but oxidative stress has been suggested to play a pathological role. We report here that the serum levels of Sonic hedgehog (SHH) protein and brain-derived neurotrophic factor (BDNF) might be linked to oxidative stress in ASD. By using the whole blood or polymorphonuclear leukocytes, we demonstrated that autistic children produced a significantly higher level of oxygen free radicals (OFR). In addition, we found significantly higher levels of serum SHH protein in children with mild as well as severe form of autism. We also found that the serum level of BDNF was significantly reduced in autistic children with mild form of the disorder but not with severe form of the disorder. Our findings are the first to report a correlation between SHH, BDNF and OFR in autistic children, suggesting a pathological role of oxidative stress and SHH in autism spectrum disorders
Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease
Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 (-/-) mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 (-/-) mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 (-/-) mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 (-/-) mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing
White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI
Frontotemporal dementia (FTD) and Alzheimer's disease are sometimes difficult to differentiate clinically because of overlapping symptoms. Using diffusion tensor imaging (DTI) measurements of fractional anisotropy (FA) can be useful in distinguishing the different patterns of white matter degradation between the two dementias. In this study, we performed MRI scans in a 4 Tesla MRI machine including T1-weighted structural images and diffusion tensor images in 18 patients with FTD, 18 patients with Alzheimer's disease and 19 cognitively normal (CN) controls. FA was measured selectively in specific fibre tracts (including corpus callosum, cingulum, uncinate and corticospinal tracts) as well as globally in a voxel-by-voxel analysis. Patients with FTD were associated with reductions of FA in frontal and temporal regions including the anterior corpus callosum (P < 0.001), bilateral anterior (left P < 0.001; right P = 0.005), descending (left P < 0.001; right P = 0.003) cingulum tracts, and uncinate tracts (left P < 0.001; right P = 0.005), compared to controls. Patients with Alzheimer's disease were associated with reductions of FA in parietal, temporal and frontal regions including the left anterior (P = 0.003) and posterior (P = 0.002) cingulum tracts, bilateral descending cingulum tracts (P < 0.001) and left uncinate tracts (P < 0.001) compared to controls. When compared with Alzheimer's disease, FTD was associated with greater reductions of FA in frontal brain regions, whereas no region in Alzheimer's disease showed greater reductions of FA when compared to FTD. In conclusion, the regional patterns of anisotropy reduction in FTD and Alzheimer's disease compared to controls suggest a characteristic distribution of white matter degradation in each disease. Moreover, the white matter degradation seems to be more prominent in FTD than in Alzheimer's disease. Taken together, the results suggest that white matter degradation measured with DTI may improve the diagnostic differentiation between FTD and Alzheimer's disease
White matter changes in microstructure associated with a maladaptive response to stress in rats
In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.We thank Neurospin (high field MRI center CEA Saclay) for providing its support for MRI acquisition. JB was supported by grants from Fondation pour la Recherche Médicale (FRM) and Groupe Pasteur Mutualité (GPM). This work was supported by a grant from ANR (SIGMA). This work was performed on a platform of France Life Imaging (FLI) network partly funded by the grant ANR-11-INBS-0006. This work and RM were supported by a fellowship of the project FCT-ANR/NEU-OSD/0258/2012 founded by FCT/MEC (www.fct.pt) and by Fundo Europeu de Desenvolvimento Regional (FEDER). AC was supported by a grant from the Fondation NRJ.info:eu-repo/semantics/publishedVersio
- …