925 research outputs found

    Transparent conducting oxides for active hybrid metamaterial devices

    No full text
    We present here a study of the combined nonlinear response of plasmonic antenna—transparent conducting oxide hybrids for activation of metamaterial devices. Nanoantenna layers consisting of randomly positioned gold nanodisk dimers are fabricated using hole-mask lithography. The nanoantenna layers are covered with a 20 nm thin layer of transparent conducting oxide (TCO). We investigate the response of atomic layer deposited aluminum-doped zinc oxide (AZO) next to indium–tin oxide (ITO) produced using sputter coating. We show that our results are in agreement with the hypothesis of fast electron-mediated cooling, facilitated by the Ohmic interface between the gold nanodisks and the TCO substrate, which appears a universal mechanism for providing a new hybrid functionality to active metamaterial device

    Fermi-Edge Singularities in the Mesoscopic X-Ray Edge Problem

    Full text link
    We study the x-ray edge problem for a chaotic quantum dot or nanoparticle displaying mesoscopic fluctuations. In the bulk, x-ray physics is known to produce deviations from the naively expected photoabsorption cross section in the form of a peaked or rounded edge. For a coherent system with chaotic dynamics, we find substantial changes and in particular that a photoabsorption cross section showing a rounded edge in the bulk will change to a slightly peaked edge on average as the system size is reduced to a mesoscopic (coherent) scale.Comment: 4 pages, 3 figures, final version as published in PR

    The Image 1994: Soaring To The Top

    Get PDF
    Rowan College of New Jersey yearbook for the Class of 1994; 184 pages. Contents: Soaring to the Top p. 4, Seniors p. 17, Graduation p. 93, Faculty and Administration p. 98, Athletics p. 113, Organizations p. 150, Yearbook Staff p. 174.https://rdw.rowan.edu/yearbooks/1037/thumbnail.jp

    Fermi Edge Singularities in the Mesoscopic Regime: I. Anderson Orthogonality Catastrophe

    Full text link
    For generic mesoscopic systems like quantum dots or nanoparticles, we study the Anderson orthogonality catastrophe (AOC) and Fermi edge singularities in photoabsorption spectra in a series of two papers. In the present paper we focus on AOC for a finite number of particles in discrete energy levels where, in contrast to the bulk situation, AOC is not complete. Moreover, fluctuations characteristic for mesoscopic systems lead to a broad distribution of AOC ground state overlaps. The fluctuations originate dominantly in the levels around the Fermi energy, and we derive an analytic expression for the probability distribution of AOC overlaps in the limit of strong perturbations. We address the formation of a bound state and its importance for symmetries between the overlap distributions for attractive and repulsive potentials. Our results are based on a random matrix model for the chaotic conduction electrons that are subject to a rank one perturbation corresponding, e.g., to the localized core hole generated in the photoabsorption process.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Fermi Edge Singularities in the Mesoscopic Regime: II. Photo-absorption Spectra

    Full text link
    We study Fermi edge singularities in photo-absorption spectra of generic mesoscopic systems such as quantum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimental setups for the observation of these effects. The theory is based on the model of a localized, or rank one, perturbation caused by the (core) hole left behind after the photo-excitation of an electron into the conduction band. The photo-absorption spectra result from the competition between two many-body responses, Anderson's orthogonality catastrophe and the Mahan-Nozieres-DeDominicis contribution. Both mechanisms depend on the system size through the number of particles and, more importantly, fluctuations produced by the coherence characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger one of our key results: a rounded K-edge typically found in metals will turn into a (slightly) peaked edge on average in the mesoscopic regime. We consider in detail the effect of the "bound state" produced by the core hole.Comment: 16 page

    Nanoscale work function contrast induced by decanethiol self-assembled monolayers on Au(111)

    Get PDF
    In this paper, we obtain maps of the spatial tunnel barrier variations in self-assembled monolayers of organosulfurs on Au(111). Maps down to the sub-nanometer scale are obtained by combining topographic scanning tunneling microscopy images with dI/dz spectroscopy. The square root of the tunnel barrier height is directly proportional to the local work function and the dI/dz signal. We use ratios of the tunnel barriers to study the work function contrast in various decanethiol phases: the lying-down striped β phase, the dense standing-up φ phase, and the oxidized decanesulfonate λ phase. We compare the induced work function variations too: the work function contrast induced by a lying-down striped phase in comparison to the modulation induced by the standing-up φ phase, as well as the oxidized λ phase. By performing these comparisons, we can account for the similarities and differences in the effects of the mechanisms acting on the surface and extract valuable insights into molecular binding to the substrate. The pillow effect, governing the lowering of the work function due to lying-down molecular tails in the striped low density phases, seems to have quite a similar contribution as the surface dipole effect emerging in the dense standing-up decanethiol phases. The dI/dz spectroscopy map of the nonoxidized β phase compared to the map of the oxidized λ phase indicates that the strong binding of molecules to the substrate is no longer present in the latter.Fil: Tsvetanova, Martina. University of Twente; Países BajosFil: Oldenkotte, Valent J. S.. University of Twente; Países BajosFil: Bertolino, María Candelaria. University of Twente; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Gao, Yuqiang. University of Twente; Países BajosFil: Siekman, Martin H.. University of Twente; Países BajosFil: Huskens, Jurriaan. University of Twente; Países BajosFil: Zandvliet, Harold J. W.. University of Twente; Países BajosFil: Sotthewes, Kai. University of Twente; Países Bajo

    Reversing age: Dual species measurement of epigenetic age with a single clock

    Get PDF
    Young blood plasma is known to confer beneficial effects on various organs in mice. However, it was not known whether young plasma rejuvenates cells and tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly-accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=593 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=850 human tissue samples to the training data. We employed these six clocks to investigate the rejuvenation effects of a plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. Cellular senescence, which is not associated with epigenetic aging, was also considerably reduced in vital organs. Overall, this study demonstrates that a plasma-derived treatment markedly reverses aging according to epigenetic clocks and benchmark biomarkers of aging.Fil: Horvath, Steve. University of California at Los Angeles; Estados UnidosFil: Singh, Kavita. NMIMS University; IndiaFil: Raj, Ken. Public Health England; Reino UnidoFil: Khairnar, Shraddha. NMIMS University; IndiaFil: Sanghav, Akshay. Nugenics Research Pvt Ltd; IndiaFil: Shrivastava, Agnivesh. Nugenics Research Pvt Ltd; IndiaFil: Zoller, Joseph A.. University of California at Los Angeles; Estados UnidosFil: Li, Caesar Z.. University of California at Los Angeles; Estados UnidosFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Canatelli Mallat, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Lehmann, Marianne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Solberg Woods, Leah C.. Wake Forest University School of Medicine; Estados UnidosFil: Garcia Martinez, Angel. University of Tennessee; Estados UnidosFil: Wang, Tengfei. University of Tennessee; Estados UnidosFil: Chiavellini, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Levine, Andrew J.. University of California at Los Angeles; Estados UnidosFil: Chen, Hao. University of Tennessee; Estados UnidosFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Katcher, Harold L.. Nugenics Research Pvt Ltd; Indi

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore