144 research outputs found

    Ebp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae

    Get PDF
    The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2

    Nuclear export competence of pre-40S subunits in fission yeast requires the ribosomal protein Rps2

    Get PDF
    Ribosome biogenesis is an evolutionarily conserved pathway that requires ribosomal and nonribosomal proteins. Here, we investigated the role of the ribosomal protein S2 (Rps2) in fission yeast ribosome synthesis. As for many budding yeast ribosomal proteins, Rps2 was essential for cell viability in fission yeast and the genetic depletion of Rps2 caused a complete inhibition of 40S ribosomal subunit production. The pattern of pre-rRNA processing upon depletion of Rps2 revealed a reduction of 27SA2 pre-rRNAs and the concomitant production of 21S rRNA precursors, consistent with a role for Rps2 in efficient cleavage at site A2 within the 32S pre-rRNA. Importantly, kinetics of pre-rRNA accumulation as determined by rRNA pulse-chases assays indicated that a small fraction of 35S precursors matured into 20S-containing particles, suggesting that most 40S precursors were rapidly degraded in the absence of Rps2. Analysis of steady-state RNA levels revealed that some pre-40S particles were produced in Rps2-depleted cells, but that these precursors were retained in the nucleolus. Our findings suggest a role for Rps2 in a mechanism that monitors pre-40S export competence

    The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein

    Get PDF
    In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein

    Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-ribosomes

    Get PDF
    Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks

    Principles of mRNA transport in yeast

    Get PDF
    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons

    Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation

    No full text
    The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necsessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs
    corecore