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Abstract

Background: Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to
value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for
fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of
commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local
microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase
producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent
use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the
presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a
considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural
residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of
biomass to biofuels.

Results: Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The
saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3
resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw
hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE
yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a
potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the
activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable
concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major
component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme.

Conclusion: Our study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production
and FPase is a rate-limiting enzyme in saccharification.
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Background
Lignocellulosic substrates are the most abundant, low
cost renewable resources worldwide [1]. Cellulose,
hemicelluloses and lignin are the three main components
which make up lignocellulosic biomass. Via enzymatic
hydrolysis, polysaccharides in the lignocellulosic substrates
can be hydrolyzed to monosaccharides [2]. Saccharification
is therefore a crucial step for sugar production [1]. Acid
hydrolysis and enzymatic hydrolysis are the two commonly
used methods for hydrolysis of cellulosic materials.
Enzymatic hydrolysis is advantageous over acid hydrolysis.
It has low environmental impact and the reaction is carried
out under mild conditions [3]. Recently, due to the constant
increase in the oil price, the significance of biofuel
production from lignocellulosic biomass as an alternative
energy source has been intensified and efficient conversion
of lignocelluloses to biofuel is gaining interest [4].
Rice is a major crop produced in large quantities in the

world [5] and rice straw is the most abundant agricultural
residue worldwide. Approximately 700-800 million tons of
rice straw is produced annually, most of which is found in
Asia. Hence, rice straw is a suitable feedstock for biofuel
production especially in Asia [2]. Various agricultural
wastes have been used as the substrate for biobutanol
production. However, not much research has focused
on biobutanol production from rice straw as the feed-
stock for fermentation and limited research has been
reported [6-9].
As fermentable sugar production from agricultural

waste is a prerequisite for bioenergy production, enor-
mous research attempt has focused on bioconversion of
cellulose into fermentable sugar [10]. Yet, more research
is required to improve the process. Hence, this work
focused on fermentable sugar production from alkali
pretreated rice straw by using cellulase produced from
a local T. harzianum SNRS3 under solid state cultivation.
Rice straw hydrolysate was subsequently utilized as
substrate for biobutanol production.

Results and discussion
Effect of alkali pretreatment of rice straw on rice straw
chemical composition
Alkali pretreatment of rice straw using 2% (w/v) NaOH
showed a rise in cellulose content of rice straw, whereas
the content of lignin and hemicelluloses was decreased.
Table 1 demonstrates cellulose, hemicellulose, lignin,
and ash content of rice straw both in untreated and
alkali-pretreated rice straw. As shown in the table, as a
Table 1 Chemical composition of rice straw before and after

Pretreatment *Cellulose (%) *Hemice

Untreated 39.74 ± 3.69 26.03 ± 0

2% (w/v) NaOH 70.9 ± 0.81 17.63 ± 3

*Results are based on the mass of dry matter.
result of pretreatment, rice straw was delignified and a
decrease in lignin content from 9.22% to 3.78% was
observed. There was a decrease in hemicelluloses
content from 26.03% to 17.63% after rice straw was pre-
treated as well. However, cellulose content of rice straw was
promoted from 39.74% in untreated rice straw to 70.9%
after rice straw was subjected to alkali pretreatment.
In a study, [2% (w/v) NaOH] was used to pretreat rice

straw and a decrease in lignin and hemicelluloses content
of rice straw was reported from 15.8% and 25.8% to 9.8%
and 18%, respectively, and an increase in cellulose content
of alkali-pretreated rice straw from 36.8% to 52.2% was
noted as well [1]. As reported in another research,
chemical composition of rice straw was different before and
after pretreatment by [2% (w/v) NaOH], and a decrease in
lignin and hemicelluloses content of rice straw after alkali
pretreatment was observed. Whereas, an increase in
cellulose content occurred when rice straw was pretreated.
As a result of alkali pretreatment of rice straw with [2%
(w/v) NaOH], cellulose content was increased from 38.3%
to 59.3% in alkali-pretreated rice straw and lignin and
hemicelluloses content was decreased from 14.9% and
28% in untreated rice straw to 9.5% and 10.9% in pre-
treated rice straw, respectively [11].

Effect of different concentrations of NaOH for
pretreatment of rice straw on reducing sugar production
Rice straw pretreated with various concentrations of
NaOH [1%, 2%, 3%, and 4% (w/v)] was used as sacchari-
fication substrate and enzymatic hydrolysis of rice straw
was performed. Figure 1 illustrates the reducing sugar
production profile from rice straw pretreated by using
different concentrations of NaOH. The reducing sugar
production was increased significantly (p < 0.05) when
NaOH-pretreated rice straw was used as substrate in
enzymatic hydrolysis. As for the effect of incubation time,
there was significant difference (p < 0.05) for the produc-
tion of reducing sugar from 0-72 h from NaOH-pretreated
rice straw used in enzymatic hydrolysis, except for 1% (w/
v) NaOH, where the production of reducing sugar was
only increased significantly from 0-48 h. The detail of
the statistical analysis is presented in Table 2.
According to the results obtained in this study, the

enzymatic hydrolysis of rice straw pretreated by using
2% (w/v) NaOH resulted in the highest production of
reducing sugars at 5.82 g/L at 72 h of incubation, as
compared to 0.99 g/L reducing sugars produced from
untreated rice straw.
alkali pretreatment

lluloses (%) *Lignin (%) *Ash (%)

.30 9.22 ± 3.01 12.48 ± 0.38

.07 3.78 ± 0.95 1.55 ± 0.05



Figure 1 Enzymatic hydrolysis of rice straw pretreated with different concentrations of NaOH. Values are means of 3 replicates ± SD.
Symbols represent: □: Untreated; ●: 1%; Δ: 2%; ○: 3%; ■: 4%.
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In a study, the effect of different concentrations of
NaOH on enzymatic hydrolysis of bagasse using cellulases
of Bacillus subtilis was investigated. As reported, the
enzymatic hydrolysis of the substrate pretreated with
2% (w/v) NaOH resulted in higher production of reducing
sugars, as compared to enzymatic hydrolysis of the
substrate pretreated with [1%, 3%, and 4% (w/v)]
NaOH. Low yield of reducing sugar obtained at [3%
and 4% (w/v)] NaOH concentration could be due to
the loss of carbohydrates that might have been solu-
bilized while the substrate was being pretreated. In
addition, the low saccharification could be attributed
to the inaccessible insoluble cellulose. This might
contribute to low sugar yield when saccharification
substrates were pretreated at higher concentrations
of NaOH [12].
As reported in our previous research [13], after rice

straw was pretreated by using alkali, not only chemical
composition of rice straw was changed, but also changes
in the cellulose morphological structure occurred. The
results of X-ray diffraction analysis revealed an increase in
Table 2 Reducing sugar production (g/L) by crude
cellulase from T. harzianum SNRS3 from rice straw
pretreated with different concentrations of NaOH

NaOH Concentration (w/v)

Time (h) Untreated 1% 2% 3% 4%

0 0.00Aa 0.00Aa 0.00Aa 0.00Aa 0.00Aa

24 0.44Ba 4.15Bb 4.31Bb 3.49Bc 3.05Bd

48 0.78Ca 4.82Cb 4.98Cb 3.78Cc 3.55Cc

72 0.99Da 4.90Cb 5.82Dc 4.17Dd 3.70De

96 1.03Da 5.06Cb,c 5.89Db 4.23Dc 3.73Dd

Note: Means expressed with different superscript capital letters within the
same column was significantly different at p < 0.05.
Means expressed with different superscript small letters within the same row
was significantly different at p < 0.05.
relative crystallinity of cellulose in alkali-pretreated rice
straw, as compared to untreated rice straw. Hydrolyzation
and peeling of amorphous regions during pretreatment
could result in the rise in relative crystallinity of cellulose
in alkali-pretreated rice straw. However, alkali pre-
treatment decreased the absolute crystallinity of cellulose.
As the SEM images showed, the pretreatment process
disrupted the hemicellulose and lignin, which might
have resulted in the changes in the structure of cellulose.
According to the results of FTIR analysis, alkali pretreat-
ment caused lignin removal and the changes in cellulose
structure.

Effect of enzyme loadings on reducing sugar production
Enzyme loading is an important parameter in enzymatic
hydrolysis, affecting reducing sugar yield. Therefore, the
effect of enzyme concentration on enzymatic hydrolysis of
rice straw pretreated with 2% (w/v) NaOH was investigated.
Various enzyme loadings were used for hydrolysis of
5% (w/v) rice straw pretreated with 2% (w/v) NaOH as
saccharification substrate. The reducing sugar production
profile was studied over a period of 96 h. Figure 2
shows that the reducing sugar production was increased
significantly (p < 0.05) according to the cellulases concen-
tration used in enzymatic hydrolysis, except for the cellu-
lase concentration of FPase: 125 U/g; CMCase: 2226.2 U/g;
β-glucosidase: 3474.2 U/g and FPase: 93.75 U/g CMCase:
1669.65 U/g; β-glucosidase: 2605.65 U/g. As for the effect
of incubation time there was significant difference
(p < 0.05) for the production of reducing sugar from 0-72 h
for all cellulase concentrations used in enzymatic
hydrolysis. The concentration of crude cellulase at the
activity of FPase: 93.75 U/g CMCase: 1669.65 U/g;
β-glucosidase: 2605.65 U/g that resulted in the produc-
tion of 29.87 g/L reducing sugar was selected for the sub-
sequent study since the reducing sugar production was



Figure 2 Effect of enzyme concentration on hydrolysis of rice straw by cellulases from T. harzianum SNRS3. Values are means of 3
replicates ± SD. Symbols represent enzyme activity (U/g substrate): □: FPase 6.25, CMCase 111.31, β-glucosidase 173.71; ■: FPase 31.25, CMCase
566.55, β-glucosidase 868.55; ○: FPase 62.5, CMCase 1113.1, β-glucosidase 1737.1; ●: FPase 93.75, CMCase 1669.65, β-glucosidase 2605.65; Δ: FPase
125, CMCase 2226.2, β-glucosidase 3474.2.
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not significantly (p > 0.05) different from the cellulase at
the activity of FPase: 125 U/g; CMCase: 2226.2 U/g; β-
glucosidase: 3474.2 U/g. The detail of the statistical ana-
lysis is presented in Table 3.
The cost of cellulase enzymes contributes to the total

cost of saccharification process. Hence, it is suggested to
minimize enzyme dosage as much as possible [14]. An
increase in enzyme concentration resulted in significant
rise of hydrolysis rate of rice straw, wheat straw, and
bagasse. However, further increase in enzyme concen-
tration did not result in significant rise of hydrolysis
rate. This might be due to improper mixing and suspen-
sion of the slurry. In fact, the rise in enzyme concentration
should increase hydrolysis rate. However, it makes the
process uneconomical [12].
Table 3 Reducing sugar production (g/L) from rice straw
using various concentrations of crude cellulase from
T. harzianum SNRS3

Enzyme Concentration (U/g substrate)

Time (h) *1 *2 *3 *4 *5

0 0.00Aa 0.00Aa 0.00Aa 0.00Aa 0.00Aa

24 4.31Ba 11.19Bb 15.05Bc 21.14Bd 21.34Bd

48 4.98Ca 12.78Cb 17.40Cc 26.93Cd 26.20Cd

72 5.82Da 14.57Db 20.14Dc 29.87Dd 30.55Dd

96 5.84Da 14.77Db 20.31Dc 30.47Dd 30.87Dd

Note: *1: FPase 6.25 U/g, CMCase 111.31 U/g, β-glucosidase 173.71 U/g.
*2: FPase 31.25 U/g, CMCase 566.55 U/g, β-glucosidase 868.55 U/g.
*3: FPase 62.5 U/g, CMCase 1113.1 U/g, β-glucosidase 1737.1 U/g.
*4: FPase 93.75 U/g, CMCase 1669.65 U/g, β-glucosidase 2605.65 U/g.
*5: FPase 125 U/g, CMCase 2226.2 U/g, β-glucosidase 3474.2 U/g.
Means expressed with different superscript capital letters within the same
column was significantly different at p < 0.05.
Means expressed with different superscript small letters within the same row
was significantly different at p < 0.05.
In this study, a similar trend was noted for fermentable
sugar production and conversion yield percentage. A
comparison between fermentable sugar production and
hydrolysis yield (%) is illustrated in Table 4.
The increase in enzyme loading favoured enzymatic

hydrolysis of corncob residue [12], wheat straw, rice
straw, and bagasse [12]. A similar trend was also noted
for fermentable sugar production and conversion yield
percentage with the increase in concentration of the
enzyme used [15]. As reported in other studies, a rise in
reducing sugar yield occurred as the enzyme concen-
tration increased [12,15]. Therefore, the results of this
research are in good agreement with other studies.
The optimal ratio between enzyme and substrate is
an important factor affecting efficiency of enzymatic
hydrolysis. In fact, more active sites of the enzyme
would be involved in conversion of the substrate into
reducing sugars via enzymatic hydrolysis when enzyme
concentration increases [5].
Table 4 Fermentable sugars production and hydrolysis
yield (%) obtained by using various concentrations of
crude cellulases from T. harzianum SNRS3

Cellulase of T. harzianum
SNRS3(U/g)

Fermentable
sugar (g/L)

Conversion/
Hydrolysis yield (%)

FPase CMCase β-glucosidase

6.25 111.31 173.71 5.82 ± 0.37 a 11.83

31.25 566.55 868.55 14.57 ± 0.47 b 29.63

62.50 1113.10 1737.10 20.14 ± 0.53 c 40.96

93.75 1669.65 2605.65 29.87 ± 1.87 d 60.75

125 2226.20 3474.20 30.55 ± 0.23 d 62.13

Note: Means expressed with different superscript letters within the same
column was significantly different at (p < 0.05).
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Effect of substrate concentration on reducing sugar
production
Efficiency of enzymatic hydrolysis is determined by the
optimal ratio between enzyme and substrate. Hence, the
effect of concentration of the substrate on reducing
sugar production was investigated by using different
concentrations of substrate [1%, 3%, 5%, and 7% (w/v)]
and the optimal unit of enzyme activity (FPase: 93.75 U/g,
CMCase: 1669.65 U/g, β-glucosidase: 2605.65 U/g) based
on the results obtained in the previous experiment. The
reducing sugar profile was studied over a period of 96 h.
Figure 3 shows the reducing sugar production was
increased significantly (p < 0.05) according to the substrate
concentration used in enzymatic hydrolysis, except for the
substrate concentration at 5% and 7% (w/v). As for the
effect of incubation time there was significant difference
(p < 0.05) for the production of reducing sugar from
0-72 h for all substrate concentrations used in enzymatic
hydrolysis. 5% (w/v) substrate that resulted in the
production of 29.87 g/L reducing sugars was selected
as substrate concentration for reducing sugar production
in subsequent study since the reducing sugar production
was not significantly different (p > 0.05) from 7% (w/v)
substrate concentration. The detail of the statistical
analysis is presented in Table 5.
Enzymatic hydrolysis of 10% (w/v) rice straw resulted

in the production of higher reducing sugar, as compared
to [4% and 6% (w/v)] substrates. As a result, 18.5 g/L
reducing sugar was obtained [12]. Effect of substrate
concentration on reducing sugar production was investi-
gated by using various lignocellulosic substrates such as
corncob, sunflower stalks, wheat straw, rice straw, and
bagasse and it was shown that the increase in sub-
strate concentration favoured reducing sugar production
[12,15,16]. In this study, an opposite trend was noted
Figure 3 Enzymatic hydrolysis of rice straw using different concentra
Symbols represent different concentrations of the substrate (w/v): ■: 1%; ♦:
between reducing sugar concentration and hydrolysis
yield (%). With the rise in substrate concentration,
sugar production increased. However, hydrolysis yield
percentage decreased due to end product inhibition
and mixing problems. Similar results have been reported
by other researchers [12,15,16]. Enzymatic hydrolysis of
various lignocellulosic materials using a variety of enzyme
sources has been reported by other researchers. In a study,
a comparison was made between the use of celluclast and
a combination of celluclast and Periconia sp. bcc 2871 as
the source of enzyme for hydrolysis of rice straw and a
reducing sugar production of 84 and 132 mg/g substrate
was reported, respectively [17]. Cellulase from T. reesei
ZM4F3 was used for enzymatic hydrolysis of rice straw
and as a result, 733 mg/g substrate reducing sugar was
produced [17]. Use of cellulase by Trametes hirsuta
for enzymatic hydrolysis of rice straw resulted in the
production of 685 mg/g substrate reducing sugars and
a hydrolysis yield of 88% was achieved [1]. Rice straw
was enzymatically hydrolyzed by cellulases from T.
reesei A1 and Penicillium sp. B1. As a result, a reducing
sugar concentration of 374 and 316 mg/g substrate and a
hydrolysis yield of 70.50% and 57.90% were obtained,
respectively [18]. As reported in a research, enzymatic
hydrolysis of rice hull by a combination of celluclast
1.5 L and Novozyme 188 resulted in the production
of 154 mg/g substrate reducing sugar and 32% hydrolysis
yield was achieved [19]. Bagasse was hydrolyzed by cellu-
lases from Penicillium janthinellum NCIM 1171 and
846 mg/g substrate reducing sugar equivalent to 94.60%
hydrolysis yield was obtained [20]. Enzymatic hydrolysis of
maize straw by cellulase from T. reesei ZU-02 produced
814 mg/g substrate reducing sugar and 83.5% conversion
yield was obtained [14]. In this study, as a result of enzym-
atic hydrolysis of alkali-pretreated rice straw using cellulase
tions of the substrate (w/v). Values are means of 3 replicates ± SD.
3%; ▲: 5%; ●: 7%.



Table 5 Reducing sugar production (g/L) by crude
cellulase from T. harzianum SNRS3 using various
concentrations of rice straw as substrate

Time (h) Substrate Concentration (w/v)

1% 3% 5% 7%

0 0.00Aa 0.00Aa 0.00Aa 0.00Aa

24 6.02Ba 14.33Bb 19.30Bc 21.85Bd

48 7.39Ca 18.94Cb 25.10Cc 25.70Cc

72 9.03Da 21.79Db 29.87Dc 30.07Dc

96 9.15Da 23.30Eb 30.70Dc 30.23Dc

Note: Means expressed with different superscript capital letters within the
same column was significantly different at p < 0.05.
Means expressed with different superscript small letters within the same row
was significantly different at p < 0.05.
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from T. harzianum SNRS3, a reducing sugar yield of
600 mg/g substrate and a hydrolysis yield of 60.75% were
achieved, as compared to reducing sugar production of
800 mg/g substrate and 81.35% conversion yield obtained
when celluclast was used.
As a result of enzymatic hydrolysis of alkali-pretreated

rice straw using cellulase from T. harzianum SNRS3,
a reducing sugar yield of 600 mg/g substrate and a
hydrolysis yield of 60.75% were achieved.

FPase as the rate-limiting enzyme
Cellulose enzymatic hydrolysis needs all the three
componets of cellulase enzyme complex system to act
synergistically. However, to study the significant role
of FPase in cellulose enzymatic hydrolysis, four com-
binations of cellulase enzyme were used in this study.
The reducing sugar profile was studied over a period
of 96 h. Table 6 shows that the production of reducing
sugar was increased significantly (p < 0.05) according to
the concentration of FPase. As for the effect of incubation
time, the reducing sugar production was significantly
increased (p < 0.05) from 0-72 h for all the enzyme
concentrations used in enzymatic hydrolysis of rice
Table 6 Reducing sugar production using celluclast and crude
concentrations of FPase (U/mL) and β-glucosidase (U/ mL)

Enzyme source FPase β-gluco

(U/mL) (U/mL)

Celluclast (5 FPU) 9.90 ± 0.07 5.55 ±

Crude cellulase 9.86 ± 0.05 265.20 ±

from T. harzianum

SNRS3

Celluclast (20 FPU) 39.60 ± 0.08 22.20 ±

Crude cellulase 0.83 ± 0.07 22.10 ±

from T. harzianum

SNRS3

Note: Values are means of 3 replicates ± SD.
straw. The detail of the statistical analysis is presented
in Table 7.
As shown in Table 6, at 72 h of enzymatic hydrolysis and

at concentration of FPase, 9.9 U/mL and 9.86 U/mL for
celluclast and the crude cellulase, respectively, regardless
of the significant difference in the concentration of
β-glucosidase present in celluclast (5.55 U/mL) and
that in the crude cellulase (265.2 U/mL), 36.30 g/L
and 26.33 g/L reducing sugars were obtained by
using celluclast and the crude cellulase of T. harzianum
SNRS3, respectively. Moreover, glucose concentration was
detected at 11.0 g/L and 10.02 g/L for celluclast and the
crude cellulase, respectively. However, when β-glucosidase
activity was fixed at 22.2 U/mL and 22.1 U/mL for
celluclast and crude cellulase while FPase concentration
for celluclast and the crude cellulase was different at the
activity of 39.6 U/mL and 0.83 U/mL for celluclast and
the crude cellulase, respectively, the reducing sugar
analysis revealed a much higher production of reducing
sugars by celluclast, as compared to the crude cellulase.
As a result, 57.27 g/L and 5.94 g/L reducing sugars were
obtained by using celluclast and the crude cellulase,
respectively. The results of HPLC analysis revealed
that glucose at the concentration of 21.15 g/L and
1.16 g/L was obtained when celluclast and the crude
cellulase were used, respectively.
Cellulases consist of three main enzymes, endoglucanase

or CMCase, exoglucanase or cellobiohydrolase and
β-glucosidase, which act synergistically in the cellulose
hydrolysis process [21-26]. Endoglucanase attacks intra-
molecular β-1,4-glucosidic bonds in cellulose polymeric
chain, leaving new chain ends for exoglucanase to cleave.
Exoglucanase or cellobiohydrolase is the second hydrolytic
enzyme attacking cellulose chain in the ends producing
cellobiose or glucose, while β-glucosidase converts cellobi-
ose to glucose. Therefore, endoglucanase and exoglucanase
are mainly responsible for depolymerization of cellulose
polymer chains and this enzymatic depolymerization step is
cellulase from T. harzianum SNRS3 at different

sidase Reducing sugar Glucose

(g/L) (g/L)

0.88 36.30 ± 0.26 11.00 ± 0.45

7.22 26.33 ± 0.75 10.02 ± 0.2

0.84 57.27 ± 0.63 21.15 ± 0.89

0.33 5.94 ± 0.31 1.16 ± 0.1



Table 7 Reducing sugar production from rice straw using
celluclast and crude cellulase from T. harzianum SNRS3 at
different concentrations of FPase (U/mL) and β-glucosidase
(U/ mL)

Time (h) Enzyme Concentration (U/mL)

*1 *2 *3 *4

0 0.00Aa 0.00Aa 0.00Aa 0.00Aa

24 23.55Ba 16.15Bb 39.56Bc 4.47Bd

48 29.19Ca 22.28Cb 51.10Cc 5.05Cd

72 36.30Da 26.33Db 57.27Dc 5.94Dd

96 37.36Da 27.56Db 58.89Dc 6.23Dd

Note: *1: Celluclast: FPase 9.90 U/mL, β-glucosidase 5.55 U/mL.
*2: Crude cellulase: FPase 9.86 U/mL, β-glucosidase 265.20 U/mL.
*3: Celluclast: FPase 39.60 U/mL, β-glucosidase 22.20 U/mL.
*4: Crude cellulase: FPase 0.83 U/mL, β-glucosidase 22.10 U/mL.
Means expressed with different superscript capital letters within the same
column was significantly different at p < 0.05.
Means expressed with different superscript small letters within the same row
was significantly different at p < 0.05.
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the rate-limiting step in cellulose hydrolysis process [27].
The effect of different ratios of cellulase and β-glucosidase
on glucose production was studied and it was shown
that the ratio of cellulase to β-glucosidase 5:1 gave
higher glucose concentration, as compared to the ratio
of 1: 5, where the lowest glucose concentration was
produced. In fact, the latter ratio only resulted in the
excess of β- glucosidase in the reaction mixture [3].
Therefore, the results of this study are in accordance
with those reported in other research [3,27] that laid
emphasis on the need for the presence of FPase at a
substantial concentration in the cellulase enzyme complex
for an efficient hydrolysis. From the results of this study, it
is inferred that for an efficient cellulose enzymatic
hydrolysis, the presence of the whole set of cellulose
hydrolytic enzymes is required. FPase is a major compo-
nent of cellulase enzymes complex, lack of which
causes inefficient cellulose hydrolysis. This leads to a
low production of reducing sugars and the presence
of β-glucosidase at a high concentration would not help in
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Figure 4 Composition of rice straw hydrolysate. Values are means of 3
such a condition since this latter enzyme is only accumu-
lated as the relative activity of β-glucosidase to FPase is
much higher.

Production of ABE by C. acetobutylicum ATCC 824 using
rice straw hydrolysate
Rice straw hydrolysate was used as the substrate for ABE
production. Based on the results of HPLC, rice straw
hydrolysate contained glucose, xylose, and arabinose as
individual sugars. Concentration of the individual sugars
is shown in Figure 4.
In order to investigate the application of fermentable

sugars produced from pretreated rice straw using the
crude cellulase, rice straw hydrolysate obtained, was
employed as fermentation substrate in ABE fermentation
by C. acetobutylicum ATCC 824. In order to compare
the results of ABE fermentation obtained in this study,
glucose (10 g/L) was used as a model substrate. As can
be seen from Figure 5, fermentation of (10 g/L) glucose
as a model substrate resulted in the production of a total
ABE concentration of 2.79 g/L (0.91 g/L acetone, 1.81 g/L
butanol, and 0.07 g/L ethanol). While, as illustrated in
Figure 6, the results of rice straw hydrolysate fermen-
tation by C. acetobutylicum ATCC 824 indicates a max-
imum total ABE production of 2.73 g/L (0.82 g/L acetone,
1.62 g/L butanol, and 0.29 g/L ethanol).
In a research, fermentation of 10 g/L, and 20 g/L glucose

by C. acetobutylicum ATCC 824, resulted in the production
of 1.76 g/L total ABE (0.41 g/L acetone, 1.18 g/L butanol,
and 0.17 g/L ethanol), and 5.76 g/L total ABE (1.36 g/L
acetone, 4.08 g/L butanol, and 0.32 g/L ethanol), when
10 g/L, and 20 g/L glucose were used, respectively [28]. In
another study, domestic organic waste containing (14 g/L
glucose) as carbon source was used in fermentation by C.
acetobutylicum DSM 1731 and 1.5 g/L total ABE was
produced [29].
In fermentation of rice straw hydrolysate, at 48 h of

fermentation, glucose as the primary and preferred
carbon source was totally consumed. It is worth noticing
ylose Arabinose

replicates ± SD.
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that Clostridia are able to consume pentoses as well as
hexoses [30]. However, arabinose was not consumed by the
strain, whereas xylose was consumed. Hence, fermentable
sugars produced via enzymatic hydrolysis of rice straw
showed to be potential sugars as substrate for ABE
production and can be applied for production of biofuels
such as biobutanol.
The results of kinetic studies are indicated in Table 8.

As can be seen from the table, kinetic studies indicated a
cell yield and biomass productivity of 0.19 g cell/g
glucose, and 0.04 g/L/h, respectively. Fermentation of
rice straw hydrolysate resulted in an ABE yield and
productivity of 0.27 g/g glucose, and 0.04 g/L/h, respect-
ively. A butanol yield of 0.16 g/g glucose was achieved.
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Conclusions
The present study confirmed that the use of NaOH as
an alkali reagent for pretreatment of rice straw could
be effective. The subsequent enzymatic hydrolysis of
alkali-pretreated rice straw and the use of rice straw
hydrolysate as the substrate for biobutanol production
was shown to be successful. The use of 2% (w/v)
NaOH was shown to be the most effective concentration
of NaOH for pretreatment of rice straw. Enzymatic
hydrolysis of rice straw pretreated with 2% (w/v) NaOH
resulted in a reducing sugar yield of 0.6 g/g substrate
and 60.75% saccharification was obtained. Reducing
sugar production increased with the increase in the
concentration of the enzyme and a similar trend was
72 96 120
tion Time (h)

anol Ethanol ABE

tylicum ATCC 824. Values are means of 3 replicates ± SD. Symbols



Table 8 Performance of ABE fermentation by
C. acetobutylicum ATCC 824 on rice straw hydrolysate

Parameter ABE fermentation by
C.acetobutylicum ATCC 824

Initial glucose concentration (g/L) 10

Final glucose concentration (g/L) 0

Maximum acetone concentration(g/L) 0.82 ± 0.10

Maximum butanol concentration(g/L) 1.62 ± 0.16

Maximum ethanol concentration(g/L) 0.29 ± 0.12

Total solvents concentration(g/L) 2.73 ± 0.34

Fermentation time(h) 72

Solvents yield(g ABE/g glucose) 0.27

Butanol yield (g butanol/g glucose) 0.16

Yield of cells (g cells/g glucose) 0.19

Solvents productivity (g/L/h) 0.04

Productivity of biomass (g/L/h) 0.04
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observed between fermentable sugar production and hy-
drolysis yield (%).With the rise in substrate concentration,
fermentable sugar production increased as well. However,
an opposite trend was observed between substrate concen-
tration and hydrolysis yield (%) due to stirring difficulties,
poor mixing, and end product inhibition. The use of 5%
(w/v) substrate resulted in the highest concentration
of reducing sugars. Rice straw hydrolysate was successfully
utilized as substrate for biobutanol production resulting in
an ABE yield and productivity of 0.27 g/g glucose and
0.04 g/L/h, respectively. A butanol yield of 0.16 g/g
glucose was achieved. The study also confirmed that,
as an enzyme complex, in order for cellulase to be effi-
cient, the presence of all the components at substantial
concentration is highly required and that the presence of
β-glucosidase at a high concentration would not help in
case FPase is not present at high enough concentration
to initiate the cellulolytic reaction. In fact, in such a
condition the addition of β-glucosidase is not effective
since this enzyme is only accumulated due to the lack
of cellobiose, the substrate for this enzyme.

Methods
Preparation and pretreatment of the substrate
Rice straw was collected from a paddy field in Sekinchan,
Selangor, Malaysia. By using an electric grinder (Model
CW-1, Hsiang Tai, Taiwan, 220 V, 50 Hz, 10 A), rice straw
was ground to 2 mm length in size, kept in a cold room at
4°C prior to use. Pretreatment method was described in
detail in our previous paper [13]. Rice straw pretreatment
was performed by using different concentrations of NaOH
[1%, 2%, 3%, and 4% (w/v)]. Effect of NaOH at various con-
centrations on substrate pretreatment and the subsequent
sugar production was investigated.
Microorganism and inoculum preparation
A local isolate of T. harzianum SNRS3 was used in this
study. The fungus was isolated from rice straw obtained
from a rice field in Sekinchan, Selangor, Malaysia (un-
published data). Inoculum preparation was described in
our previous study [13].

Solid state fermentation of rice straw by T. harzianum
SNRS3 for cellulase production
Solid state cultivation was conducted and the crude enzyme
mixture was extracted as described in the previous research
[13]. The crude enzyme was kept at 4°C prior to use
for enzymatic hydrolysis.

Enzymatic hydrolysis
Effect of pretreatment of rice straw using NaOH at various
concentrations on reducing sugar production
To investigate the most effective concentration of NaOH
for pretreatment of rice straw as the substrate for
saccharification, NaOH at different concentrations [1%,
2%, 3%, and 4% (w/v)] was used. Untreated substrate was
used as control. Pretreated substrate was placed in 50 mL
Erlenmeyer flasks followed by being autoclaved at 121°C,
for 15 min. Crude cellulase enzyme was added to each
flask at the concentration of FPase 6.25 U/g substrate,
CMCase 111.31 U/g substrate and β-glucosidase 173.71
U/g substrate. Enzymatic hydrolysis of alkali-pretreated
rice straw was carried out in a reaction mixture containing
[5% (w/v)] substrate in 20 mL 50 mM sodium citrate
buffer (pH 5). The reaction mixture was incubated in
a shaker incubator at 50°C and rotated at 150 rpm for
96 h. Samples (1 mL) were withdrawn at 0, 24, 48, 72 and
96 h. Samples were centrifuged for 10 min at 10,000 rpm.
The supernatant was used for reducing sugar analysis and
kept at -20°C prior to analysis. Concentration of NaOH
yielding the highest concentration of reducing sugars
was applied for pretreatment of rice straw in subsequent
study.

Effect of enzyme loadings on reducing sugar production
Effect of enzyme loadings on enzymatic hydrolysis was
investigated using rice straw pretreated with 2% (w/v)
NaOH as the substrate. In order to study the effect of
enzyme concentration on sugar production, preparation
of the flasks and the substrate was done as described
above. [5% (w/v)] substrate pretreated with 2% (w/v)
NaOH was placed in each flask autoclaved at 121°C, for
15 min. It was then followed by the addition of various
concentrations of the enzyme, each in a separate flask.
Enzymatic saccharification was performed under the
same conditions as described above and the samples
were taken at regular interval. Samples were centrifuged
and kept at -20°C prior to use for sugar analysis. Total
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activity of the enzyme was calculated based on the following
equation:

Total activity of the enzyme U=gð Þ
¼ Enzyme activity U=mLð Þx Volume of the enzyme mLð Þx 10a

ð1Þ
acoefficient of the conversion of unit of enzyme activity
(U/ mL) to (U/g substrate).
Enzyme activity was calculated based on the following

Equations:

FPase U=mLð Þ ¼ final abs−c
m

x
df

sample volume
x

1
time

x
1000 μg
1 mg

x
1 μmole
180:16 μg

ð2Þ

CMCase U=mLð Þ ¼ final abs−c
m

x
df

sample volume

x
1

time
x
1000 μg
1 mg

x
1 μmole
180:16 μg

ð3Þ

β−glucosidase U=mLð Þ ¼ final abs−c
m

x
df

sample volume

x
1

time
x
1000 μg
1 mg

x
1 μmole
139:1 μg

ð4Þ

Where m is the slope from the standard curve, abs is
the absorbance, c is the intercept, and df is the dilution
factor. Time is the reaction time and is expressed in minute.
To convert U/mL to U/g, the value for the activity of the
enzyme (U/mL) was divided by the amount of rice straw in
each flask (3 g) times volume of sodium citrate buffer used
to extract the enzyme (30/mL).

Effect of substrate concentration on reducing sugar
production
To investigate the effect of substrate concentration
on enzymatic hydrolysis [1%, 3%, 5%, and 7% (w/v)]
substrate, pretreated with 2% (w/v) NaOH was placed
in different flasks. Crude cellulase concentration yielding
the highest reducing sugar concentration from the previous
study determined the enzyme concentration to be added to
the substrate in each flask. Therefore, crude cellulase at the
concentration of FPase 93.75 U/g substrate, CMCase
1669.65 U/g substrate and β-glucosidase 2605.65 U/g sub-
strate was added to the substrate in flasks, each containing
a different concentration of the substrate. Sampling was
done at regular interval and the samples were centrifuged
at 10,000 rpm for 10 min followed by being kept at -20°C.
All the experiments were done in triplicates.

FPase as the rate-limiting enzyme
To study the significant role of FPase in cellulose enzymatic
hydrolysis, FPase activity was fixed both for celluclast
(5 FPU) and the crude cellulase from T. harzianum
SNRS3. FPase activity was fixed at 9.90 U/mL and
9.86 U/mL for celluclast and the crude cellulase, respect-
ively. However, β-glucosidase activity for celluclast and the
crude cellulase enzyme was significantly different at 5.55
U/mL and 265.2 U/mL, respectively. Enzymatic hydrolysis
of 5% (w/v) rice straw was carried out in 20 mL of 50 mM
sodium citrate buffer solution, using a shaker incubator at
50°C, 150 rpm for 96 h. The initial pH was adjusted to 5.0
which is the optimum pH for celluclast [31]. Alternatively,
in another experiment, β-glucosidase activity was fixed
both for celluclast (20 FPU) and the crude cellulase
enzyme. β-glucosidase activity was fixed at 22.20 U/mL
and 22.10 U/mL for celluclast and the crude cellulase
enzyme, respectively. However, the concentration of FPase
in celluclast and the crude cellulase enzyme was signifi-
cantly different at 39.6 U/mL and 0.83 U/mL, respectively.
The enzymatic hydrolysis was performed under the
afore-mentioned conditions. Samples were kept at -20°C
prior to the analysis of reducing sugar concentration.

Substrate preparation for Acetone-Butanol-Ethanol (ABE)
fermentation
As substrate for ABE fermentation, rice straw pretreated
with 2% (w/v) NaOH was used. Following pretreatment,
the pretreated substrate was subjected to enzymatic
hydrolysis as described earlier and the enzyme and
substrate concentration were used according to the results
of the previous experiments. Rice straw hydrolysate
was used as the substrate in ABE fermentation for
the growth of the bacteria and subsequent biobutanol
production.

Inoculum maintenance and preparation for ABE
fermentation
C. acetobutylicum ATCC 824 from American Type
Culture Collection was used as the ABE producing
microorganism. The stock culture was grown on Reinforced
Clostridial Medium (RCM) agar under anaerobic conditions
using anaerobe container system GaspakTM EZ at 37°C.
The single colony was grown on RCM broth at 37°C for
48 h. The medium was sparged with N2 gas to provide
anaerobic conditions for the growth of the bacteria.
Bacterial cells were maintained as spore suspension on
60% (v/v) sterile glycerol at the ratio 2: 1 (culture: glycerol)
and stored at -40°C prior to use.
Chemical composition and RCM preparation method

is as follows:
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RCM is composed of Meat extract 10 g/L, Peptone 5 g/L,
Yeast extract 3 g/L, D-(+)-glucose 5 g/L, Starch 1 g/L,
NaCl 5 g/L, Sodium acetate 3 g/L, L-Cysteine hydrochloride
0.5 g/L, Agar 0.5 g/L. Medium pH was adjusted to pH 6.0
using 1 M sodium hydroxide (NaOH) before being trans-
ferred into serum bottles. 100 mL of the prepared media
was transferred into 125 mL serum bottles and sparged
with nitrogen gas for 15 min and closed tightly using
rubber septa before it was autoclaved at 121°C for 15 min.
The media was prepared a day before inoculum preparation
and stored at 4°C prior to use for inoculum preparation.
Inoculum was heat shocked at 80°C for 2 min prior to
being inoculated into freshly prepared RCM. Inoculum
was then kept at 37°C for 48 h before being transferred
into fermentation production medium.

ABE production medium
Tryptone-Yeast extract-Acetate (TYA) medium was used
as ABE production medium. Chemical composition and
preparation method is as follows:
Yeast extract 2 g/L, Tryptone 6 g/L, CH3COONH4

3 g/L, FeSO4.7 H2O 10 mg/L, KH2PO4 0.5 g/L, MgSO4

0.3 g/L, rice straw hydrolysate (10 g/L glucose, 1.66 g/L
xylose, 0.5 g/L arabinose). For preparation of TYA
medium, all the chemical components were dissolved in
rice straw hydrolysate (carbon source) and transferred
into 125 mL serum bottles. Medium pH was adjusted to
5.5. The medium was then sparged with nitrogen gas for
15 min for anaerobiosis before being autoclaved at
115°C for 10 min. 5% of freshly prepared inoculum
was inoculated into fermentation production medium.
Fermentation was carried out at 37°C, 120 rpm for
120 h. Sampling was done at 0, 24, 48, 72, 96, and 120 h.
Samples were kept at -20°C prior to being analyzed for
solvents and optical density.

Analytical procedure
Cellulose, hemicelluloses, lignin, and ash content of
rice straw were measured using a standard method
[32]. Reducing sugar analysis was performed by using
Dinitrosalicylic acid (DNS) reagent and according to a
standard method [33]. Enzyme activity was assayed
according to the standard method [34]. (%) Saccharification
was calculated according to the following Equation:
(%) Saccharification = reducing sugars × 0.9 × 100)/
carbohydrates in substrate [1]. Bacterial cell concentration
was determined based on correlation between dry cell
weight (DCW) and optical density (OD) using spectro-
photometer at 680 nm. Individual sugars concentration
was measured by using High Performance Liquid
Chromatography (HPLC). Solvents were analyzed by
using Gas Chromatography (GC). Yield was defined as
grams of ABE produced per gram of glucose utilized.
ABE productivity was calculated as total ABE produced
in g/L divided by the fermentation time and is expressed
as g/L/h.
Yield of cells was defined as grams of cells produced

per grams of glucose utilized. Productivity of biomass was
calculated as maximum cell concentration in g/L divided
by the fermentation time and is expressed as g/L/h.

Statistical analysis
The data was analyzed by one-way analysis of variance
(ANOVA). t Tests (LSD) was used to compare the difference
of means among treatment groups. Differences of p < 0.05
were considered significant.
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