225 research outputs found

    Analysis of Rock Varnish from the Mojave Desert by Handheld Laser-Induced Breakdown Spectroscopy

    Get PDF
    Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish—Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies

    Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards

    Get PDF
    Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad‐bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein–Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities

    The balance of power: accretion and feedback in stellar mass black holes

    Full text link
    In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture Notes in Physics. Springer 201

    The nucleus of Comet 67P/Churyumov-Gerasimenko: a new shape model and thermophysical analysis

    Get PDF
    Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims. To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods. We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8–24 μm thermal-IR flux measurements from the literature. Results. A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78◦(±10◦), β = +58◦(±10◦). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions. The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or “bi-lobed” nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of −2 K−1 s−1/2 is comparable with that measured for other comets scaled to similar heliocentric distances, and implies a surface regolith finer than lunar surface material

    The effects of emotional states and traits on time perception

    Get PDF
    Background: Models of time perception share an element of scalar expectancy theory known as the internal clock, containing specific mechanisms by which the brain is able to experience time passing and function effectively. A debate exists about whether to treat factors that influence these internal clock mechanisms (e.g., emotion, personal- ity, executive functions, and related neurophysiological components) as arousal- or attentional-based factors. Purpose: This study investigated behavioral and neurophysiological responses to an affective time perception Go/ NoGo task, taking into account the behavioral inhibition (BIS) and behavioral activation systems (BASs), which are components of reinforcement sensitivity theory. Methods: After completion of self-report inventories assessing personality traits, electroencephalogram (EEG/ERP) and behavioral recordings of 32 women and 13 men recruited from introductory psychology classes were completed during an affective time perception Go/NoGo task. This task required participants to respond (Go) and inhibit (NoGo) to positive and negative affective visual stimuli of various durations in comparison to a standard duration. Results: Higher BAS scores (especially BAS Drive) were associated with overestimation bias scores for positive stimuli, while BIS scores were not correlated with overestimation bias scores. Furthermore, higher BIS Total scores were associ- ated with higher N2d amplitudes during positive stimulus presentation for 280 ms, while higher BAS Total scores were associated with higher N2d amplitudes during negative stimuli presentation for 910 ms. Discussion: Findings are discussed in terms of arousal-based models of time perception, and suggestions for future research are considered

    Measuring affective well-being at work using short-form scales : implications for affective structures and participant instructions

    Get PDF
    Measuring affective well-being in organizational studies has become increasingly widespread, given its association with key work-performance and other markers of organizational functioning. As such, researchers and policy-makers need to be confident that well-being measures are valid, reliable and robust. To reduce the burden on participants in applied settings, short-form measures of affective well-being are proving popular. However, these scales are seldom validated as standalone, comprehensive measures in their own right. In this article, we used a short-form measure of affective well-being with 10 items: the Daniels five-factor measure of affective well-being (D-FAW). In Study 1, across six applied sample groups (N = 2624), we found that the factor structure of the short-form D-FAW is robust when issued as a standalone measure, and that it should be scored differently depending on the participant instruction used. When participant instructions focus on now or today, then affect is best represented by five discrete emotion factors. When participant instructions focus on the past week, then affect is best represented by two or three mood-based factors. In Study 2 (N = 39), we found good construct convergent validity of short-form D-FAW with another widely used scale (PANAS). Implications for the measurement and structure of affect are discussed

    Extinction Risk and Diversification Are Linked in a Plant Biodiversity Hotspot

    Get PDF
    Plant extinction risks in the Cape, South Africa differ from those for vertebrates worldwide, with young and fast-evolving plant lineages marching towards extinction at the fastest rate, but independently of human effects

    Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis

    Get PDF
    This study examined fiber type-dependent differences in the regulation of protein synthesis in individual muscle fibers found within the same whole muscle. Specifically, the in vivo SUrface SEnsing of Translation (SUnSET) methodology was used to measure protein synthesis in type 1, 2A, 2X and 2B fibers of the mouse plantaris muscle, in response to food deprivation (FD), and mechanical overload induced by synergist ablation (SA). The results show that 48 h of FD induced a greater decrease in protein synthesis in type 2X and 2B fibers compared to type 1 and 2A fibers. Type 2X and 2B fibers also had the largest FD-induced decrease in total S6 protein and Ser240/244 S6 phosphorylation, respectively. Moreover, only type 2X and 2B fibers displayed a FD-induced decrease in cross-sectional area (CSA). Ten days of SA also induced fiber type-dependent responses, with type 2B fibers having the smallest SA-induced increases in protein synthesis, CSA and Ser240/244 S6 phosphorylation, but the largest increase in total S6 protein. Embryonic myosin heavy chain (MHCEmb) positive fibers were also found in SA muscles and the protein synthesis rates, levels of S6 Ser240/244 phosphorylation, and total S6 protein content, were 3.6-, 6.1- and 2.9-fold greater than that found in fibers from control muscles, respectively. Overall, these results reveal differential responses in the regulation of protein synthesis and fiber size between fiber types found within the same whole muscle. Moreover, these findings demonstrate that changes found at the whole muscle level do not necessarily reflect changes in individual fiber types
    corecore