9 research outputs found

    Distribution of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Langkawi Island, Malaysia

    Get PDF
    The individual compounds and sources of polycyclic aromatic hydrocarbon (PAHs) were studied in the surface sediments at 32 locations in the tourism area of Langkawi Island. A total of 15 PAHs were determined and quantified by gas chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from Langkawi Island ranged from 228.13 to 990.25 ng/g and they were classified as being in the low to moderate pollution range. All sampling stations were dominated by high molecular weight PAHs with 4 rings (31.59%) and 5-6 rings (42.73%). The diagnostic ratio results showed that in most cases, the sampling stations have pyrogenic input. Further analysis using principal component analysis (PCA) combined with absolute principal component score (APCS) and multiple linear regression (MLR) showed that the natural gas emissions contributed to 57% of the total PAH concentration, 22% from the incomplete combustion and pyrolysis of fuel, 15% from pyrogenic and petrogenic sources and 6% from an undefined source

    Assessing Indoor air quality and sick building syndrome in public University buildings: a cross-sectional study of office worker health and well-being

    Get PDF
    Exposure to indoor air pollution among office workers can result in various health issues and increase the incidence of Sick Building Syndrome (SBS). The aim of the present study was to investigate the effect of exposure to Indoor Air Quality (IAQ) among office workers and the relationship with the prevalence of SBS at Universiti Kebangsaan Malaysia (UKM), Bangi. A cross-sectional comparison research involving 144 office workers from various new and old buildings was carried out at UKM, Bangi. Information was gathered and symptoms associated with SBS were determined using a series of questionnaires. During office hours, IAQ parameters were collected using air quality sensor. The old building had substantially higher levels of NO2 (24.26 ppb), CO (0.62 ppb), and PM10 (4.99 μg/m3) than the new building. It was found that, with a p < 0.001, the concentration of O3 in the new building (11.47 ppb) was significantly higher than in the old building (4.93 ppb). The study’s findings also showed that the difference in temperature between the old buildings (26°C) and new buildings (24°C) was statistically significant (p = 0.003). Referring to relative humidity (RH), the result of the old building is lower (56%) compared to the new building (62%). Although old buildings exhibited a higher prevalence of SBS (34.7%), it was found that there was no significant difference compared to new buildings (27.5%). According to the study’s findings, found that exposure to CO (χ2 = 5.242, p = 0.022), PM10 (χ2 = 13.449, p < 0.001), and PM2.5 (χ2 = 19.755, p < 0.001) among office workers with the prevalence of SBS has significant association. In conclusion, this study suggests that exposure to high levels of CO, PM10 and PM2.5 can increase the prevalence of SBS. Good housekeeping and regular maintenance of ventilation can keep good IAQ and reduce health effects among occupants

    Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASEC′16

    Get PDF
    Isoprene (C5H8) plays an important role in the formation of surface ozone (O3) and the secondary organic aerosol (SOA) which contributed to the climate change. This study aims to determine hourly distribution of tropospheric isoprene over the Western Coast of Antarctic Peninsula (WCAP) during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC′16). In-situ measurements of isoprene were taken using a custom-built gas chromatography with photoionization detector, known as iDirac. Biological parameters such as chlorophyll a (chl-a) and particulate organic carbon (POC) were compared to the in-situ isoprene measurements. Significant positive correlation was observed between isoprene and POC concentrations (r2 = 0.67, p < 0.001), but not between isoprene and chl-a. The hotspots of isoprene over maritime Antarctic were then were investigated using NAME dispersion model reanalysis. Measurements showed that isoprene mixing ratio were the highest over region of King George Island, Deception Island and Booth Island with values of ∼5.0, ∼0.9 and ∼5.2 ppb, respectively. Backward trajectory analysis showed that air masses may have lifted the isoprene emitted by marine algae. We believe our findings provide valuable data set of isoprene estimation over the under sampled WCAP

    Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of Langkawi Island, Malaysia

    No full text
    The individual compounds and sources of polycyclic aromatic hydrocarbon (PAHs) were studied in the surface sediments at 32 locations in the tourism area of Langkawi Island. A total of 15 PAHs were determined and quantified by gas chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from Langkawi Island ranged from 228.13 to 990.25 ng/g and they were classified as being in the low to moderate pollution range. All sampling stations were dominated by high molecular weight PAHs with 4 rings (31.59%) and 5-6 rings (42.73%). The diagnostic ratio results showed that in most cases, the sampling stations have pyrogenic input. Further analysis using principal component analysis (PCA) combined with absolute principal component score (APCS) and multiple linear regression (MLR) showed that the natural gas emissions contributed to 57% of the total PAH concentration, 22% from the incomplete combustion and pyrolysis of fuel, 15% from pyrogenic and petrogenic sources and 6% from an undefined source

    Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models

    No full text
    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009–2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC’16 increased from a minimum of 5 ppb to ~ 10–13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC’16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region
    corecore