630 research outputs found

    Toxaphene and Other Organochlorines in Arctic Ocean Fauna: Evidence for Atmospheric Delivery

    Get PDF
    Residues of the insecticide toxaphene (polychlorinated camphenes, PCCs) and other organochlorines (OCs) were determined in air, snow, seawater, zooplankton, and benthic amphipods collected from an ice island in the Canadian Arctic. The simultaneous determination of OCs in the atmospheric, hydrologic, and biologic compartments provided evidence of an atmospheric link to polar food chains. PCCs were identified and quantified using capillary gas chromatography - negative ion mass spectrometry. The order of OCs abundance in arctic air was: hexachlorocyclohexanes (HCHs) > hexachlorobenzene > PCCs > polychlorinated biphenyls (PCBs) > chlordanes > DDTs. In seawater, PCCs were exceeded only by the HCHs. Concentrations of PCBs and PCCs in two samples of benthic amphipods were the highest of the OCs detected.Key words: Arctic, Canada, pollution, organochlorines, air, water, biotaMots clés: Arctique, Canada, pollution, organochlorés, air, eau, biot

    A cryogenic testbed for the characterisation of large detector arrays for astronomical and Earth-observing applications in the near to very-long-wavelength infrared

    Get PDF
    In this paper we describe a cryogenic testbed designed to offer complete characterisation-via a minimal number of experimental configurations— of mercury cadmium telluride (MCT) detector arrays for low-photon background applications, including exoplanet science and solar system exploration. Specifically, the testbed offers a platform to measure the dark current of detector arrays at various temperatures, whilst also characterising their optical response in numerous spectral bands. The average modulation transfer function (MTF) can be found in both dimensions of the array along with the overall quantum efficiency. Working from a liquid-helium bath allows for measurement of arrays from 4.2 K and active-temperature control of the surface to which the array is mounted allows for characterisation of arrays at temperatures up to 80 K, with the temperature of the array holder known to an accuracy of at least 1 mK, with the same level of long-term stability

    Hunt for Planet Nine: Atmosphere, Spectra, Evolution, and Detectability

    Get PDF
    We investigate the physical characteristics of the solar system\u27s proposed Planet Nine using modeling tools with a heritage of studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic , from ~35 to 50 K for masses of 5–20 M ⊕, and we also explore lower values. Possible planetary radii could readily span from 2.7 to 6 R ⊕, depending on the mass fraction of any H/He envelope. Given its cold atmospheric temperatures, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find that the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo approaching 0.75. We highlight two diagnostics for the atmosphere\u27s temperature structure: (1) the value of the methane mixing ratio above the methane cloud and (2) the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H2 in the infrared, the planet would be extremely blue instead of red in the shortest wavelength WISE colors if methane is depleted and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from ~3 to 5 μm are ~20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection

    Visual outcomes and predictors in optic pathway glioma: a single centre study

    Get PDF
    BACKGROUND/AIMS: Optic pathway gliomas (OPGs) may cause progressive visual loss despite chemotherapy. Newer, less toxic treatments might be given earlier, depending on visual prognosis. We aimed to investigate the prognostic value of visual evoked potentials (VEP) and optical coherence tomography (OCT). METHODS: A retrospective study of OPG patients (treated 2003–2017) was conducted. Primary outcome was PEDIG category visual acuity in better and worse eyes (good  = 0.7 logMAR). Binary logistic regression analysis was used to identify predictors of these outcomes. RESULTS: 60 patients (32 Neurofibromatosis type 1 [NF1] and 28 sporadic) had median presentation age 49 months (range 17–183) (NF1) and 27 months (range 4–92) (sporadic). Median follow up was 82 months (range 12–189 months). At follow up 24/32 (75%) of NF1 children and 14/28 (50%) of sporadic children had good better eye visual acuity and 11/32 (34%) of NF1 children and 15/28 (54%) of sporadics had poor worse eye acuity. Mean peripapillary retinal nerve fibre layer (RNFL) thickness predicted good better eye final acuity (OR 0.799, 95%CI 0.646–0.987, p = 0.038). Presenting with visual symptoms (OR 0.22 95% CI 0.001–0.508, p = 0.017) and poorer VEP scores (OR 2.35 95% CI 1.1–5.03, p = 0.027) predicted poor worse eye final acuity. 16 children had homonymous hemianopias at follow up, predicted by poor presenting binocular VEP score (OR 1.449 95%CI 1.052–1.995, p = 0.02). CONCLUSIONS: We found that both RNFL thickness on OCT and VEP were useful in predicting future visual acuity and vision and potentially in planning treatment. We had a high prevalence of homonymous hemianopia

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    The Aquila prestellar core population revealed by Herschel

    Get PDF
    The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys

    Air Pollution Exposure Monitoring using Portable Low-cost Air Quality Sensors

    Get PDF
    Urban environments with a high degree of industrialization are infested with hazardous chemicals and airborne pollutants. These pollutants can have devastating effects on human health, causing both acute and chronic diseases such as respiratory infections, lung cancer, and heart disease. Air pollution monitoring is vital not only to citizens, warning them on the health risks of air pollutants, but also to policy-makers,assisting them on drafting regulations and laws that aim at minimizing those health risks. Currently,air pollution monitoring predominantly relies on expensive high-end static sensor stations. These stations produce only aggregated information about air pollutants, and are unable to capture variations in individual’s air pollution exposure. As an alternative, this article develops a citizen-based air pollution monitoring system that captures individual exposure levels to air pollutants during daily indoor and outdoor activities. We present a low-cost portable sensor and carry out a measurement campaign using the sensors to demonstrate the validity and benefits of citizen-based pollution measurements. Specifically, we (i) successfully classify the data into indoor and outdoor, and (ii) validate the consistency and accuracy of our outdoor-classified data to the measurements of a high-end reference monitoring station. Our experimental results further prove the effectiveness of our campaign by (i) providing fine-grained air pollution insights over a wide geographical area, (ii) identifying probable causes of air pollution dependent on the area, and (iii) providing citizens with personalized insights about air pollutants in their daily commute.Peer reviewe

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

    Get PDF
    The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potentialprestellar cores in the Polaris cloud region.Comment: 5 pages, 2 figures, accepted by A&

    The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    Full text link
    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolution surveys and narrow field of view, and high resolution observations of substructure within molecular cloud cores. The first science flight will be from McMurdo Station, Antarctica in December 2010.Comment: 14 pages, 9 figures Submitted to SPIE Astronomical Telescopes and Instrumentation Conference 201
    • …
    corecore