19 research outputs found

    Morphometric variations at an ecological scale: Seasonal and local variations in feral and commensal house mice

    Get PDF
    The time scales of evolutionary and ecological studies tend to converge, as evidenced by studies that have shown contemporary evolution can occur as fast as ecological processes. This opens new questions regarding variation of characters usually considered to change mostly along an evolutionary time scale, such as morphometric traits, including osteological and dental features such as mandibles and teeth of mammals. Using two-dimensional geometric morphometric approach, we questioned whether such features can change on a seasonal and local basis, in relation to the ecological dynamics of the populations. Our model comprised populations of house mice (Mus musculus domesticus) in two contrasted situations in mainland Western Europe: a feral population vs. two close commensal populations. Mitochondrial DNA (D-loop) provided insight into the diversity and dynamics of the populations. The feral population appeared as genetically highly diversified, suggesting a possible functioning as a sink in relation to the surrounding commensal populations. In contrast, commensal populations were highly homogeneous from a genetic point of view, suggesting each population to be isolated. This triggered morphological differentiation between neighboring farms. Seasonal differences in morphometric traits (mandible size and shape and molar size and shape) were significant in both settings, although seasonal variations were greater in the feral than in the commensal population. Seasonal variations in molar size and shape could be attributed to differential wear in young or overwintered populations. Differences in mandible shape could be related to aging in overwintered animals, but also possibly to differing growth conditions depending on the season. The impact of these ecological processes on morphometric traits is moderate compared to divergence over a large biogeographic scale, but their significance nevertheless underlines that even morphological characters may trace populations dynamics at small scale in time and space

    The complete mitochondrial genome of a parasite at the animal-fungal boundary

    Get PDF
    Background: Sphaerothecum destruens is an obligate intracellular fish parasite which has been identified as a serious threat to freshwater fishes. Taxonomically, S. destruens belongs to the order Dermocystida within the class Ichthyosporea (formerly referred to as Mesomycetozoea), which sits at the animal-fungal boundary. Mitochondrial DNA (mtDNA) sequences can be valuable genetic markers for species detection and are increasingly used in environmental DNA (eDNA) based species detection. Furthermore, mtDNA sequences can be used in epidemiological studies by informing detection, strain identification and geographical spread. Methods: We amplified the entire mitochondrial (mt) genome of S. destruens in two overlapping long fragments using primers designed based on the cox1, cob and nad5 partial sequences. The mt-genome architecture of S. destruens was then compared to close relatives to gain insights into its evolution. Results: The complete mt-genome of Sphaerothecum destruens is 23,939 bp in length and consists of 47 genes including 21 protein-coding genes, 2 rRNA, 22 tRNA and two unidentified open reading frames. The mitochondrial genome of S. destruens is intronless and compact with a few intergenic regions and includes genes that are often missing from animal and fungal mt-genomes, such as, the four ribosomal proteins (small subunit rps13 and 14; large subunit rpl2 and 16), tatC (twin-arginine translocase component C), and ccmC and ccmF cytochrome c maturation protein ccmC and heme lyase). Conclusions: We present the first mt-genome of S. destruens which also represents the first mt-genome for the order Dermocystida. The availability of the mt-genome can assist the detection of S. destruens and closely related parasites in eukaryotic diversity surveys using eDNA and assist epidemiological studies by improving molecular detection and tracking the parasite’s spread. Furthermore, as the only representative of the order Dermocystida, its mt-genome can be used in the study of mitochondrial evolution of the unicellular relatives of animals

    Eurasian house mouse (Mus musculus L.) differentiation at microsatellite loci identifies the Iranian plateau as a phylogeographic hotspot

    Get PDF
    Background: The phylogeography of the house mouse (Mus musculus L.), an emblematic species for genetic and biomedical studies, is only partly understood, essentially because of a sampling bias towards its most peripheral populations in Europe, Asia and the Americas. Moreover, the present-day phylogeographic hypotheses stem mostly from the study of mitochondrial lineages. In this article, we complement the mtDNA studies with a comprehensive survey of nuclear markers (19 microsatellite loci) typed in 963 individuals from 47 population samples, with an emphasis on the putative Middle-Eastern centre of dispersal of the species. Results: Based on correspondence analysis, distance and allele-sharing trees, we find a good coherence between geographical origin and genetic make-up of the populations. We thus confirm the clear distinction of the three best described peripheral subspecies, M. m. musculus, M. m. domesticus and M. m. castaneus. A large diversity was found in the Iranian populations, which have had an unclear taxonomic status to date. In addition to samples with clear affiliation to M. m. musculus and M. m. domesticus, we find two genetic groups in Central and South East Iran, which are as distinct from each other as they are from the south-east Asian M. m. castaneus. These groups were previously also found to harbor distinct mitochondrial haplotypes. Conclusion: We propose that the Iranian plateau is home to two more taxonomic units displaying complex primary and secondary relationships with their long recognized neighbours. This central region emerges as the area with the highest known diversity of mouse lineages within a restricted geographical area, designating it as the focal place to study the mechanisms of speciation and diversification of this species

    A sharp incisor tool for predator house mice back to the wild

    Get PDF
    The house mouse (Mus musculus domesticus), as a successful invasive species worldwide, has to forage a variety of resources. Subantarctic mice display among the most notable diet shift from the usual omnivorous–granivorous diet, relying on a larger proportion of terrestrial animal prey. In agreement, a recent study of their mandible morphology evidenced an evolution of their mandible shape to optimize incisor biting and hence seize preys. Here, the incisors themselves are the focus of a morphometric analysis combined with a 3D study of their internal structure, aiming at a comparison between subantarctic populations (Guillou island, Kerguelen archipelago) with a range of western European continental, commensal mice. The predatory foraging behavior of Guillou mice was indeed associated with a sharper bevel of the lower incisor, which appears as an efficient morphology for piercing prey. The incisor of these mice also displays a reduced pulp cavity, suggesting slower eruption counterbalancing a reduced abrasion on such soft food material. The dynamics of the ever‐growing incisor may thus allow adaptive incisor sculpting and participate to the success of mice in foraging diverse resources

    Origin and invasion of the emerging infectious pathogen Sphaerothecum destruens

    Get PDF
    Non-native species are often linked with the introduction of novel pathogens with detrimental effects to native biodiversity. Since the first discovery of Sphaerothecum destruens as a fish pathogen in the UK, it has been identified as a potential threat to European fish biodiversity. Despite this parasite’s emergence and associated disease risk there is still a poor understanding of its origin in Europe. Here, we provide the first evidence supporting the hypothesis that S. destruens has been accidentally introduced to Europe from China along with its reservoir host Pseudorasbora parva via the aquaculture trade. This is the first study to confirm the presence of S. destruens in China and has expanded the confirmed range of S. destruens to more locations in Europe. The demographic analysis of S. destruens and its host P. parva in their native and invasive range further supported the close association of both species. The work has direct significance and management implications for S. destruens in Europe as a non-native parasite

    Phylogenetic and environmental DNA insights into emerging aquatic parasites: implications for risk management.

    Get PDF
    Species translocation leads to disease emergence in native species of considerable economic importance. Generalist parasites are more likely to be transported, become established and infect new hosts, thus their risk needs to be evaluated. Freshwater systems are particularly at risk from parasite introductions due to the frequency of fish movements, lack of international legislative controls for non-listed pathogens and inherent difficulties with monitoring disease introductions in wild fish populations. Here we used one of the world's most invasive freshwater fish, the topmouth gudgeon, Pseudorasbora parva, to demonstrate the risk posed by an emergent generalist parasite, Sphaerothecum destruens. Pseudorasbora parva has spread to 32 countries from its native range in China through the aquaculture trade and has introduced S. destruens to at least five of these. We systematically investigated the spread of S. destruens through Great Britain and its establishment in native fish communities through a combination of phylogenetic studies of the host and parasite and a novel environmental DNA detection assay. Molecular approaches confirmed that S. destruens is present in 50% of the P. parva communities tested and was also detected in resident native fish communities but in the absence of notable histopathological changes. We identified specific P. parva haplotypes associated with S. destruens and evaluated the risk of disease emergence from this cryptic fish parasite. We provide a framework that can be applied to any aquatic pathogen to enhance detection and help mitigate future disease risks in wild fish populations

    Ancient mitochondrial DNA connects house mice in the British Isles to trade across Europe over three millennia.

    Get PDF
    BACKGROUND: The earliest records in Britain for the western European house mouse (Mus musculus domesticus) date from the Late Bronze Age. The arrival of this commensal species in Britain is thought to be related to human transport and trade with continental Europe. In order to study this arrival, we collected a total of 16 ancient mouse mandibulae from four early British archaeological sites, ranging from the Late Bronze Age to the Roman period. RESULTS: From these, we obtained ancient mitochondrial DNA (mtDNA) house mouse sequences from eight house mice from two of the sites dating from the Late Bronze to Middle Iron Age. We also obtained five ancient mtDNA wood mouse (Apodemus spp.) sequences from all four sites. The ancient house mouse sequences found in this study were from haplogroups E (N = 6) and D (N = 2). Modern British house mouse mtDNA sequences are primarily characterised by haplogroups E and F and, much less commonly, haplogroup D. CONCLUSIONS: The presence of haplogroups D and E in our samples and the dating of the archaeological sites provide evidence of an early house mouse colonisation that may relate to Late Bronze Age/Iron Age trade and/or human expansion. Our results confirm the hypothesis, based on zooarchaeological evidence and modern mtDNA predictions, that house mice, with haplogroups D and E, were established in Britain by the Iron Age and, in the case of haplogroup E, possibly as early as the Late Bronze Age

    Wildlife conservation in a fragmented landscape: the Eurasian red squirrel on the Isle of Wight

    Get PDF
    Island populations may have a higher extinction risk due to reduced genetic diversity and need to be managed effectively in order to reduce the risk of biodiversity loss. The Eurasian red squirrels (Sciurus vulgaris) in the south of England only survive on three islands (the Isle of Wight, Brownsea and Furzey islands), with the Isle of Wight harbouring the largest population in the region. Fourteen microsatellites were used to determine the genetic structure of red squirrel populations on the Isle of Wight, as well as their relatedness to other populations of the species. Our results demonstrated that squirrels on these islands were less genetically diverse than those in Continental mainland populations, as would be expected. It also confirmed previous results from mitochondrial DNA which indicated that the squirrels on the Isle of Wight were relatively closely related to Brownsea island squirrels in the south of England. Importantly, our findings showed that genetic mixing between squirrels in the east and west of the Isle of Wight was very limited. Given the potential deleterious effects of small population size on genetic health, landscape management to encourage dispersal of squirrels between these populations should be a priorit

    Vicariance in a generalist fish parasite driven by climate and salinity tolerance of hosts

    Get PDF
    Acanthocephalans are parasites with complex lifecycles that are important components of aquatic systems and are often model species for parasite-mediated host manipulation. Genetic characterisation has recently resurrected Pomphorhynchus tereticollis as a distinct species from Pomphorhynchus laevis, with potential implications for fisheries management and host manipulation research. Morphological and molecular examinations of parasites from 7 English rivers across 9 fish species revealed that P. tereticollis was the only Pomphorhynchus parasite present in Britain, rather than P. laevis as previously recorded. A meta-analysis using two genetic regions and all the DNA sequences Abstract: available for P. tereticollis has identified two distinct genetic lineages of P. tereticollis in Britain. One lineage, possibly associated with cold water tolerant fish, potentially spread to the northern parts of Britain from the Baltic region via a northern route across the estuarine area of what is now the North Sea during the last Glaciation. The other lineage, associated with temperate freshwater fish, may have arrived later via the Rhine/Thames fluvial connection during the last glaciation or early Holocene when sea levels were low. These results raise important questions on this generalist parasite and its variously environmentally adapted hosts, and especially in relation to the consequences for parasite vicariance
    corecore