83 research outputs found
An optical heterodyne densitometer
Researchers are developing an optical heterodyne densitometer with the potential to measure optical density over an unprecedented dynamic range with high accuracy and sensitivity. This device uses a Mach-Zender interferometer configuration with heterodyne detection to make direct comparisons between optical and RF attenuators. Researchers expect to attain measurements of filter transmittance down to 10 to the minus 12th power with better than 1 percent uncertainty. In addition, they intend to extend the technique to the problem of measuring low levels of light scattering from reflective and transmissive optics
The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation
Aims: We present 11 high-precision photometric transit observations of the
transiting super-Earth planet GJ1214b. Combining these data with observations
from other authors, we investigate the ephemeris for possible signs of transit
timing variations (TTVs) using a Bayesian approach.
Methods: The observations were obtained using telescope-defocusing
techniques, and achieve a high precision with random errors in the photometry
as low as 1mmag per point. To investigate the possibility of TTVs in the light
curve, we calculate the overall probability of a TTV signal using Bayesian
methods.
Results: The observations are used to determine the photometric parameters
and the physical properties of the GJ1214 system. Our results are in good
agreement with published values. Individual times of mid-transit are measured
with uncertainties as low as 10s, allowing us to reduce the uncertainty in the
orbital period by a factor of two.
Conclusions: A Bayesian analysis reveals that it is highly improbable that
the observed transit times is explained by TTV, when compared with the simpler
alternative of a linear ephemeris.Comment: Submitted to A&
High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe
MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light
Microlensing detections of cool planets are important for the construction of
an unbiased sample to estimate the frequency of planets beyond the snow line,
which is where giant planets are thought to form according to the core
accretion theory of planet formation. In this paper, we report the discovery of
a giant planet detected from the analysis of the light curve of a
high-magnification microlensing event MOA-2010-BLG-477. The measured
planet-star mass ratio is and the projected
separation is in units of the Einstein radius. The angular
Einstein radius is unusually large mas. Combining
this measurement with constraints on the "microlens parallax" and the lens
flux, we can only limit the host mass to the range . In
this particular case, the strong degeneracy between microlensing parallax and
planet orbital motion prevents us from measuring more accurate host and planet
masses. However, we find that adding Bayesian priors from two effects (Galactic
model and Keplerian orbit) each independently favors the upper end of this mass
range, yielding star and planet masses of
and at a distance of kpc,
and with a semi-major axis of AU. Finally, we show that the
lens mass can be determined from future high-resolution near-IR adaptive optics
observations independently from two effects, photometric and astrometric.Comment: 3 Tables, 12 Figures, accepted in Ap
A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251
Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10-3. Thanks to our detection of higher-order effects on the light curve due to the Earth\u27s orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. Results. We find that the lens is made up of a planet of mass 0.53 ± 0.21 M J orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M⊙. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU. © 2013 ESO
Estimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry
Aims. We present the analysis of 26 nights of V and I time-series observations from 2011 and 2012 of the globular cluster M 30 (NGC 7099). We used our data to search for variable stars in this cluster and refine the periods of known variables; we then used our variable star light curves to derive values for the cluster\u27s parameters. Methods. We used difference image analysis to reduce our data to obtain high-precision light curves of variable stars. We then estimated the cluster parameters by performing a Fourier decomposition of the light curves of RR Lyrae stars for which a good period estimate was possible. We also derived an estimate for the age of the cluster by fitting theoretical isochrones to our colour-magnitude diagram (CMD). Results. Out of 13 stars previously catalogued as variables, we find that only 4 are bona fide variables. We detect two new RR Lyrae variables, and confirm two additional RR Lyrae candidates from the literature. We also detect four other new variables, including an eclipsing blue straggler system, and an SX Phoenicis star. This amounts to a total number of confirmed variable stars in M 30 of 12. We perform Fourier decomposition of the light curves of the RR Lyrae stars to derive cluster parameters using empirical relations. We find a cluster metallicity [Fe/H]ZW =-2.01 ± 0.04, or [Fe/H]UVES =-2.11 ± 0.06, and a distance of 8.32 ± 0.20 kpc (using RR0 variables), 8.10 kpc (using one RR1 variable), and 8.35 ± 0.42 kpc (using our SX Phoenicis star detection in M 30). Fitting isochrones to the CMD, we estimate an age of 13.0 ± 1.0 Gyr for M 30. © 2013 ESO
MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: Microlensing and a new time delay
Aims. We present V and R photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Methods. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. Results. The quasar WFI 2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE 0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of Δt = (7.6 ± 1.8) days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI 2033-4723 and HE 0047-1756 become bluer when brighter, which is consistent with previous studies
High-precision photometry by telescope defocusing - V.WASP-15 and WASP-16
We present newphotometric observations ofWASP-15 andWASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers. Our new data for WASP-15 comprise observations of one transit simultaneously in four optical passbands using GROND on the MPG/European Southern Observatory (ESO) 2.2 m telescope, plus coverage of half a transit from DFOSC on the Danish 1.54 m telescope, both at ESO La Silla. ForWASP-16 we present observations of fourcomplete transits, all from the Danish telescope. We use these new data to refine the measured physical properties and orbital ephemerides of the two systems. Whilst our results are close to the originally determined values forWASP-15, we find that the star and planet in theWASP-16 system are both larger and less massive than previously thought. ©2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
- …