266 research outputs found

    Impact of proctoring on success rates for percutaneous revascularisation of coronary chronic total occlusions.

    Get PDF
    OBJECTIVE: To assess the impact of proctoring for chronic total occlusion (CTO) percutaneous coronary intervention (PCI) in six UK centres. METHODS: We retrospectively analysed 587 CTO procedures from six UK centres and compared success rates of operators who had received proctorship with success rates of the same operators before proctorship (pre-proctored) and operators in the same institutions who had not been proctored (non-proctored). There were 232 patients in the pre-proctored/non-proctored group and 355 patients in the post-proctored group. Complexity was assessed by calculating the Japanese CTO (JCTO) score for each case. RESULTS: CTO PCI success was greater in the post-proctored compared with the pre-proctored/non-proctored group (77.5% vs 62.1%, p<0.0001). In more complex cases where JCTO≥2, the difference in success was greater (70.7% vs 49.5%, p=0.0003). After proctoring, there was an increase in CTO PCI activity in centres from 2.5% to 3.5%, p<0.0001 (as a proportion of total PCI), and the proportion of very difficult cases with JCTO score ≥3 increased from 15.3% (35/229) to 29.7% (105/354), p<0.0001. CONCLUSIONS: Proctoring resulted in an increase in procedural success for CTO PCI, an increase in complex CTO PCI and an increase in total CTO PCI activity. Proctoring may be a valuable way to improve access to CTO PCI and the likelihood of procedural success

    From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila

    Get PDF
    Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these “parasites” will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%–20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Establishing an urban geo-observatory to support sustainable development of shallow subsurface heat recovery and storage

    Get PDF
    Low-enthalpy ground source heating and cooling is recognised as one strategy that can contribute towards reducing reliance on traditional, increasingly insecure, CO2-intense thermal power generation, as well as helping to address fuel poverty. Development of this technology is applicable in urban areas where high housing density often coincides with the presence of shallow aquifers. In urban areas groundwater temperatures can be elevated due to the subsurface Urban Heat Island effect. Uptake and development of this technology is often limited by initial investment costs, however, baseline temperature monitoring and characterisation of urban aquifers, conducted in partnership with local authorities, can provide a greater degree of certainty around resource and sustainability that can facilitate better planning, regulation and management of subsurface heat. We present a novel high-density, city-scale groundwater temperature observatory and introduce a 3D geological model aimed at addressing the needs of developers, planners, regulators and policy makers. The Cardiff Geo-Observatory measures temperature in a Quaternary aged sand and gravel aquifer in 61 boreholes and at a pilot shallow open-loop ground source heating system. We show that repurposing existing infrastructure can provide a cost effective method of developing monitoring networks, and make recommendations on establishing similar geo-observatories

    Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

    Get PDF
    Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study

    The Nicotinic Acetylcholine Receptor Dα7 Is Required for an Escape Behavior inDrosophila

    Get PDF
    Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dα7 nicotinic acetylcholine receptor (nAChR) ofDrosophila shows that it is required for the giant fiber-mediated escape behavior. The Dα7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found thatgfA(1), a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele ofDα7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dα7 nAChR in giant fiber-mediated escape inDrosophila

    Sapling size influences shade tolerance ranking among southern boreal tree species

    Get PDF
    1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny

    Long-term health status and trajectories of seriously injured patients: A population-based longitudinal study

    Get PDF
    Improved understanding of the quality of survival of patients is crucial in evaluating trauma care, understanding recovery patterns and timeframes, and informing healthcare, social, and disability service provision. We aimed to describe the longer-term health status of seriously injured patients, identify predictors of outcome, and establish recovery trajectories by population characteristics.A population-based, prospective cohort study using the Victorian State Trauma Registry (VSTR) was undertaken. We followed up 2,757 adult patients, injured between July 2011 and June 2012, through deaths registry linkage and telephone interview at 6-, 12-, 24-, and 36-months postinjury. The 3-level EuroQol 5 dimensions questionnaire (EQ-5D-3L) was collected, and mixed-effects regression modelling was used to identify predictors of outcome, and recovery trajectories, for the EQ-5D-3L items and summary score. Mean (SD) age of participants was 50.8 (21.6) years, and 72% were male. Twelve percent (n = 333) died during their hospital stay, 8.1% (n = 222) of patients died postdischarge, and 155 (7.0%) were known to have survived to 36-months postinjury but were lost to follow-up at all time points. The prevalence of reporting problems at 36-months postinjury was 37% for mobility, 21% for self-care, 47% for usual activities, 50% for pain/discomfort, and 41% for anxiety/depression. Continued improvement to 36-months postinjury was only present for the usual activities item; the adjusted relative risk (ARR) of reporting problems decreased from 6 to 12 (ARR 0.87, 95% CI: 0.83-0.90), 12 to 24 (ARR 0.94, 95% CI: 0.90-0.98), and 24 to 36 months (ARR 0.95, 95% CI: 0.95-0.99). The risk of reporting problems with pain or discomfort increased from 24- to 36-months postinjury (ARR 1.06, 95% CI: 1.01, 1.12). While loss to follow-up was low, there was responder bias with patients injured in intentional events, younger, and less seriously injured patients less likely to participate; therefore, these patient subgroups were underrepresented in the study findings.The prevalence of ongoing problems at 3-years postinjury is high, confirming that serious injury is frequently a chronic disorder. These findings have implications for trauma system design. Investment in interventions to reduce the longer-term impact of injuries is needed, and greater investment in primary prevention is needed

    Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress

    Get PDF
    Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects
    corecore