79 research outputs found

    Correlates of Adverse Outcomes in Abdominally Obese Individuals: Findings from the Five-Year Followup of the Population-Based Study of Health in Pomerania

    Get PDF
    Background. Abdominal obesity is a major risk factor of cardiovascular disease (CVD), type 2 diabetes (T2DM), and premature death. However, it has not been resolved which factors predispose for the development of these adverse obesity-related outcomes in otherwise healthy individuals with abdominal obesity. Methods. We studied 1,506 abdominal obese individuals (waist-to-height ratio (WHtR) ≄ 0.5) free of CVD or T2DM from the population-based Study of Health in Pomerania and assessed the incidence of CVD or T2DM after a five-year followup. Logistic regression models were adjusted for major cardiovascular risk factors and liver, kidney diseases, and sociodemographic status. Results. During follow-up time, we observed 114 and 136 new T2DM and CVD cases, respectively. Regression models identified age, waist circumference, serum glucose, and liver disease as predictors of T2DM. Regarding CVD, only age, unemployment, and a divorced or widowed marital status were significantly associated with incident CVD. In this subgroup of obese individuals blood pressure, serum glucose, or lipids did not influence incidence of T2DM or CVD. Conclusion. We identified various factors associated with an increased risk of incident T2DM and CVD among abdominally obese individuals. These findings may improve the detection of high-risk individuals and help to advance prevention strategies in abdominal obesity

    Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor—Rationale and Design of the IMAD Pilot Study

    Get PDF
    Background: agonistic autoantibodies (agAABs) against G protein-coupled receptors (GPCR) have been linked to cardiovascular disease. In dementia patients, GPCR-agAABs against the α1- and ß2-adrenoceptors (α1AR- and ß2AR) were found at a prevalence of 50%. Elimination of agAABs by immunoadsorption (IA) was successfully applied in cardiovascular disease. The IMAD trial (Efficacy of immunoadsorption for treatment of persons with Alzheimer dementia and agonistic autoantibodies against alpha1A-adrenoceptor) investigates whether the removal of α1AR-AABs by a 5-day IA procedure has a positive effect (improvement or non-deterioration) on changes of hemodynamic, cognitive, vascular and metabolic parameters in patients with suspected Alzheimer’s clinical syndrome within a one-year follow-up period. Methods: the IMAD trial is designed as an exploratory monocentric interventional trial corresponding to a proof-of-concept phase-IIa study. If cognition capacity of eligible patients scores 19–26 in the Mini Mental State Examination (MMSE), patients are tested for the presence of agAABs by an enzyme-linked immunosorbent assay (ELISA)-based method, followed by a bioassay-based confirmation test, further screening and treatment with IA and intravenous immunoglobulin G (IgG) replacement. We aim to include 15 patients with IA/IgG and to complete follow-up data from at least 12 patients. The primary outcome parameter of the study is uncorrected mean cerebral perfusion measured in mL/min/100 gr of brain tissue determined by magnetic resonance imaging with arterial spin labeling after 12 months. Conclusion: IMAD is an important pilot study that will analyze whether the removal of α1AR-agAABs by immunoadsorption in α1AR-agAAB-positive patients with suspected Alzheimer’s clinical syndrome may slow the progression of dementia and/or may improve vascular functional parameters

    Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Get PDF
    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed

    All-cause mortality and serum insulin-like growth factor I in primary care patients

    Get PDF
    Objective: Previous population-based studies provided conflicting results regarding the association of total serum insulin-like growth factor I (IGF-I) and mortality. The aim of the present study was to assess the relation of IGF-I levels with all-cause mortality in a prospective study. Design: DETECT (Diabetes Cardiovascular Risk-Evaluation: Targets and Essential Data for Commitment of Treatment) is a large, multistage, and nationally representative study of primary care patients in Germany. The study population included 2463 men and 3603 women. Death rates were recorded by the respective primary care physician. Serum total IGF-I levels were determined by chemiluminescence immunoassays and categorized into three groups (low, moderate, and high) according to the sex- and age-specific 10th and 90th percentiles. Results: Adjusted analyses revealed that men with low [hazard ratio (HR) 1.70 (95% confidence interval [CI] 1.05–2.73), p=0.03] and high [HR 1.76 (95% CI 1.09–2.85), p=0.02] IGF-I levels had higher risk of all-cause mortality compared to men with moderate IGF-I levels. The specificity of low IGF-I and high IGF-I levels increased with lower and higher cut-offs, respectively. No such association became apparent in women. Conclusions: The present study revealed a U-shaped relation between IGF-I and all-cause mortality in male primary care patients

    Improved prediction of all-cause mortality by a combination of serum total testosterone and insulin-like growth factor I in adult men

    Get PDF
    Objective: Lower levels of anabolic hormones in older age are well documented. Several studies suggested that low insulin-like growth factor I (IGF-I) or testosterone levels were related to increased mortality. The aim of the present study was to investigate the combined influence of low IGF-I and low testosterone on all-cause mortality in men. Methods and results: From two German prospective cohort studies, the DETECT study and SHIP, 3942 men were available for analyses. During 21,838 person-years of follow-up, 8.4% (n = 330) of men died. Cox model analyses with age as timescale and adjusted for potential confounders revealed that men with levels below the 10th percentile of at least one hormone [hazard ratio (HR) 1.38 (95% confidence-interval (CI) 1.06–1.78), p = 0.02] and two hormones [HR 2.88 (95% CI 1.32–6.29), p < 0.01] showed a higher risk of all-cause mortality compared to men with non-low hormones. The associations became non-significant by using the 20th percentile as cut-off showing that the specificity increased with lower cut-offs for decreased hormone levels. The inclusion of both IGF-I and total testosterone in a mortality prediction model with common risk factors resulted in a significant integrated discrimination improvement of 0.5% (95% CI 0.3–0.7%, p = 0.03). Conclusions: Our results prove that multiple anabolic deficiencies have a higher impact on mortality than a single anabolic deficiency and suggest that assessment of more than one anabolic hormone as a biomarker improve the prediction of all-cause mortality

    Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts

    Get PDF
    Background: Obesity, defined as pathologically increased body mass index (BMI),is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D

    A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    A meta-analysis of gene expression signatures of blood pressure and hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Proposal of 0.5 mg of protein/100 g of processed food as threshold for voluntary declaration of food allergen traces in processed food—A first step in an initiative to better inform patients and avoid fatal allergic reactions: A GAÂČLEN position paper

    Get PDF
    Background: Food anaphylaxis is commonly elicited by unintentional ingestion of foods containing the allergen above the tolerance threshold level of the individual. While labeling the 14 main allergens used as ingredients in food products is mandatory in the EU, there is no legal definition of declaring potential contaminants. Precautionary allergen labeling such as "may contain traces of" is often used. However, this is unsatisfactory for consumers as they get no information if the contamination is below their personal threshold. In discussions with the food industry and technologists, it was suggested to use a voluntary declaration indicating that all declared contaminants are below a threshold of 0.5 mg protein per 100 g of food. This concentration is known to be below the threshold of most patients, and it can be technically guaranteed in most food production. However, it was also important to assess that in case of accidental ingestion of contaminants below this threshold by highly allergic patients, no fatal anaphylactic reaction could occur. Therefore, we performed a systematic review to assess whether a fatal reaction to 5mg of protein or less has been reported, assuming that a maximum portion size of 1kg of a processed food exceeds any meal and thus gives a sufficient safety margin. Methods: MEDLINE and EMBASE were searched until 24 January 2021 for provocation studies and case reports in which one of the 14 major food allergens was reported to elicit fatal or life-threatening anaphylactic reactions and assessed if these occurred below the ingestion of 5mg of protein. A Delphi process was performed to obtain an expert consensus on the results. Results: In the 210 studies included, in our search, no reports of fatal anaphylactic reactions reported below 5 mg protein ingested were identified. However, in provocation studies and case reports, severe reactions below 5 mg were reported for the following allergens: eggs, fish, lupin, milk, nuts, peanuts, soy, and sesame seeds. Conclusion: Based on the literature studied for this review, it can be stated that cross-contamination of the 14 major food allergens below 0.5 mg/100 g is likely not to endanger most food allergic patients when a standard portion of food is consumed. We propose to use the statement "this product contains the named allergens in the list of ingredients, it may contain traces of other contaminations (to be named, e.g. nut) at concentrations less than 0.5 mg per 100 g of this product" for a voluntary declaration on processed food packages. This level of avoidance of cross-contaminations can be achieved technically for most processed foods, and the statement would be a clear and helpful message to the consumers. However, it is clearly acknowledged that a voluntary declaration is only a first step to a legally binding solution. For this, further research on threshold levels is encouraged
    • 

    corecore