10 research outputs found

    A crowd-based route recommendation system-CrowdPlanner

    No full text
    Route recommendation service has become a big business in industry since traveling is now an important part of our daily life. We can travel to unknown places by simply typing in our destination and then following recommendation service's guidance, that a pleasant trip desires them to provide a good route. However, previous research shows that even the routes recommended by the big-thumb service providers can deviate significantly from the routes travelled by experienced drivers since the many latent factors affect drivers' preferences and it is hard for a single route recommendation algorithm to model all of them. In this demo we will present the CrowPlanner system to leverage crowds' knowledge to improve the recommendation quality. It requests human workers to evaluate candidates routes recommended by different sources and methods, and determines the best route based on the feedbacks of these workers. In this demo, we first introduce the core component of our system for smart question generation, and then show several real route recommendation cases and the feedback of users

    Dynamic changes in chemical composition and microbial community characteristics during pile-fermentation process of Phyllanthus emblica Linn. fruit

    No full text
    Pile-fermentation is a common processing step for Phyllanthus emblica L. fruit (PEF) in its producing area. This process enhances its flavor, reduces astringency, and increases its health benefits. However, the mechanism behind pile-fermentation and the key factors impacting PEF quality remain unknown, becoming an urgent challenge that limits its further application. To address this issue, 87 volatile compounds were analyzed by HS-SPME/GC-QQQ-MS/MS and identified acetic acid and ethyl acetate as distinguishing markers before and after fermentation. The results found that 2-methoxy-3-isobutylpyrazine contributes to the differences in odor after fermentation based on the odor intensity characteristic spectrum. Illumina Miseq sequencing of ITS1 region and 16SrDNA V4 region was performed to investigate the microbial succession during the pile-fermentation. A total of 4 phyla 34 genera of fungi and 15 phyla 61 genera of bacteria were detected in all samples. The results showed that the dominant bacteria had significant differences due to different habitats before fermentation, and the diversity increased after fermentation, while the fungal diversity exhibited the opposite trend. Aspergillus and the Unclassified_f_Necriaceae genus emerged as dominant genera after fermentation. Additionally, through UPLC-QTOF-MS analysis, we identified 18 differential components before and after fermentation. Among these, 5 compounds, such as 2-O-galloyl-1,4-galactolactone and 1-methyl-2-gallate galactose ester, showed a downward trend, whereas 13 compounds, including corilagin and chebulitic acid, exhibited an upward trend. These changes weakened astringency while improving sourness and aftertaste sweetness. The results of this study hold significant importance in clarifying the fermentation mechanism and improving the quality standards of PEF

    Thermal treatment enhances the resisting exercise fatigue effect of Phyllanthus emblica L.: novel evidence from tannin conversion in vitro, metabolomics, and gut microbiota community analysis

    No full text
    Abstract Polyphenols are the main component of Phyllanthus emblica (PE). However, polyphenols are so easy to transform that it is unknown that how drying methods driven by heating affect the anti-fatigue effect of PE. This manuscript investigated the effects of five drying methods on the chemical composition transformation and anti-fatigue of PE, and discussed the action mechanism. The results suggested that the anti-fatigue effect of PE with hot-air-dried at 100 °C was the best, which was as 1.63 times as that with freeze-drying. Ellagic acid (EA) may be a key component of PE in anti-fatigue, and its mechanism of action may be related to regulating intestinal microbiota, protecting mitochondria, and regulating energy metabolism. This study first revealed the thermal transformation of polyphenols in PE, found the most effective strategy for enhancing the anti-fatigue function, and explores its action mechanism

    High or low temperature extraction, which is more conducive to Triphala against chronic pharyngitis?

    No full text
    Objective: Explore the effects of high-temperature reflux extraction and low-temperature decompressing inner ebullition on Triphala's chemical composition and anti-chronic pharyngitis activity. Methods: The network pharmacology was used to analyze the material basis, targets and pathways of Triphala for chronic pharyngitis. HPLC were used to compare the fingerprint profile and content of components between the two extracts. The antioxidant and anti-chronic pharyngitis activities of the two extracts were compared by DPPH assay and ammonia induced chronic pharyngitis model in rats. Results: The network pharmacology results showed that the active ingredients of Triphala for chronic pharyngitis are epigallocatechin-3-gallate, (+)-catechin, epicatechin, epicatechin gallate, (+)-gallocatechin, quercetin, luteolin, leucodelphinidin and other flavonoids; phenolic acids such as gallic acid and ellagic acid; alkaloids such as ellipticine, cheilanthifoline; hydrolyzed tannins such as corilagin and chebulic acid. The high-temperature reflux extract and the low-temperature decompressing inner ebullition extract have extremely significant differences in the fingerprint profile. Among them, the content of gallic acid, ellagic acid, chebulic acid, catechin, epicatechin, corilagin, quercetin, and epicatechin gallate in the reflux extract is 1.1–5.3 times as much as decompressing inner ebullition extract. The free radical scavenging ability of reflux extract is significantly stronger than that of decompression extract (p < 0.01), and it has a repairing effect on pharyngeal mucosal damage (reducing keratinization or hyperplasia of mucosal epithelium, reducing inflammatory cell infiltration and bleeding), and reducing IL-1β (P<0.05), IL-6 (p<0.05), TNF-α overexpression ability is stronger than the decompressing inner ebullition extract. Conclusions: gallic acid, ellagic acid, chebulic acid, catechin, epicatechin, corilagin and epicatechin gallate are the basic aglycones or oligomers of tannin. High temperature reflux extraction can significantly promote the occurrence of the hydrolysis of tannins and significantly increases the content of these components.Therefore, its anti-chronic pharyngitis activity is enhanced. It is suggested that high temperature reflux extraction should be used in the treatment of chronic pharyngitis
    corecore