230 research outputs found

    Twinning superlattices in indium phosphide nanowires

    Full text link
    Here, we show that we control the crystal structure of indium phosphide (InP) nanowires by impurity dopants. We have found that zinc decreases the activation barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the InP nanowires to crystallise in the zinc blende, instead of the commonly found wurtzite crystal structure. More importantly, we demonstrate that we can, by controlling the crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by the wire diameter and the zinc concentration and present a model based on the cross-sectional shape of the zinc-blende InP nanowires to quantitatively explain the formation of the periodic twinning.Comment: 18 pages, 4 figure

    High quality monolayer graphene synthesized by resistive heating cold wall chemical vapour deposition

    Get PDF
    Emerging flexible and wearable technologies such as healthcare electronics and energy-harvest devices could be transformed by the unique properties of graphene. The vision for a graphene-driven industrial revolution is motivating intensive research on the synthesis of (1) high quality and (2) low cost graphene. Hot-wall chemical vapour deposition (CVD) is one of the most competitive growth methods, but its long processing times are incompatible with production lines. Here we demonstrate the growth of high quality monolayer graphene using a technique that is 100 times faster than standard hot-wall CVD, resulting in 99% reduction in production costs. A thorough complementary study of Raman spectroscopy, atomic force microscopy, scanning electron microscopy and electrical magneto-transport measurements shows that our cold wall CVD-grown graphene is of comparable quality to that of natural graphene. Finally, we demonstrate the first transparent and flexible graphene capacitive touch-sensor that could enable the development of artificial skin for robots.Comment: Bointon, T. H., Barnes, M. D., Russo, S. and Craciun, M. F. (2015), High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition. Adv. Mater.. doi:10.1002/adma.20150160

    The challenge of face recognition from digital point-and-shoot cameras

    Full text link
    Inexpensive “point-and-shoot ” camera technology has combined with social network technology to give the gen-eral population a motivation to use face recognition tech-nology. Users expect a lot; they want to snap pictures, shoot videos, upload, and have their friends, family and acquain-tances more-or-less automatically recognized. Despite the apparent simplicity of the problem, face recognition in this context is hard. Roughly speaking, failure rates in the 4 to 8 out of 10 range are common. In contrast, error rates drop to roughly 1 in 1,000 for well controlled imagery. To spur advancement in face and person recognition this pa-per introduces the Point-and-Shoot Face Recognition Chal-lenge (PaSC). The challenge includes 9,376 still images of 293 people balanced with respect to distance to the cam-era, alternative sensors, frontal versus not-frontal views, and varying location. There are also 2,802 videos for 265 people: a subset of the 293. Verification results are pre-sented for public baseline algorithms and a commercial al-gorithm for three cases: comparing still images to still im-ages, videos to videos, and still images to videos. 1

    Multi-pyridine decorated Fe(ii) and Ru(ii) complexes by Pd(0)-catalysed cross couplings: new building blocks for metallosupramolecular assemblies

    Get PDF
    Eight metal complexes of the type [M(tpy)2]2+ (tpy = 2,2′:6′,2′′-terpyridine) featuring four pendant pyridine rings are reported and characterised by NMR, MS, absorption spectroscopy and electrochemical methods. Palladium-mediated Suzuki and Sonogashira cross-coupling reactions were performed on both free 4′-(3,5- dibromophenyl)-tpy and its Ru(ii) complex in good yields. The ready N-alkylation of the pendant pyridyl units has significant influence on the absorption and electrochemical reduction of the complexes, processes which are localised on the periphery and leaves the [Ru(tpy)2]2+ core essentially unaffected. The binding of metal ions by the free pyridines is also demonstrated as means of assembling larger ordered non-covalent structures. This journal i

    Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA

    Get PDF
    Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart

    Transcriptome Profiling of Testis during Sexual Maturation Stages in Eriocheir sinensis Using Illumina Sequencing

    Get PDF
    The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation
    corecore